
HAL Id: hal-00134202
https://hal.archives-ouvertes.fr/hal-00134202

Submitted on 1 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Property Grammars: a Fully Constraint-Based Theory
Philippe Blache

To cite this version:
Philippe Blache. Property Grammars: a Fully Constraint-Based Theory. H. Christiansen, P. Rossen
Skadhauge, J. Villadsen. Constraint Solving and Language Processing, Springer, pp.1-16, 2004. �hal-
00134202�

https://hal.archives-ouvertes.fr/hal-00134202
https://hal.archives-ouvertes.fr

Property Grammars: A Fully Constraint-Based Theory

Philippe Blache

LPL-CNRS
Universit́e de Provence

29 Avenue Robert Schuman
13621 Aix-en-Provence, France

pb@lpl.univ-aix.fr

Abstract. This paper presents the basis ofProperty Grammars, a fully constraint-
based theory. In this approach, all kinds of linguistic information is represented
by means of constraints. Theconstraint systemconstitutes then the core of the
theory: it is the grammar, but it also constitutes, after evaluation for a given input,
its description.Property Grammarsis then a non-generative theory in the sense
that no structure has to be build, only constraints are used both to represent lin-
guistic information and to describe inputs. This paper describes the basic notions
used inPG and proposes an account of long-distance dependencies, illustrating
the expressive power of the formalism.

1 Introduction: Constraints in Property Grammars

Constraints are usually used in linguistics as a filtering process. They represent fine-
level information in order to rule-out some unwanted structures. According to the the-
ory, constraints can more or less play an intensive role, as it is the case withHPSG(see
[Sag99]),Optimality Theory(see [Prince93]), ConstraintDependency Grammars(see
[Maruyama90]), or in other kinds of formalisms such asDynamic Syntax(see [Kemp-
son02]). We propose to extend the use of constraints to the representation and the treat-
ment different of linguistic information.

This approach presents several advantages, in particular the possibility of repre-
senting (and treating) separately different linguistic information. This idea was initially
implemented in GPSG (see [Gazdar85]) which proposes, by means of the ID/LP for-
malism, to distinguish hierarchy from linear order whereas this information is merged
in classical phrase-structure grammars. The introduction of constraints completed this
tendency in offering the possibility of representing directly some specific information
such as cooccurrence restriction. We propose, inProperty Grammars(cf. [Blache00])
to represent separately each type of linguistic information by means of a specific con-
straint. In this way, constraints can represent all kinds of linguistic information.

One consequence of this characteristic is that constraints can be evaluated inde-
pendently from each other. In generative theories, syntactic information is represented
within a system in which all information has to be interpreted with respect to the en-
tire system. In other words, a phrase-structure rule, which is the basic representation
level in generative approaches, is not evaluable in itself. It takes its meaning in the
global derivational process, and has no specific value outside of it. This is what Pullum

in his lectures (cf. also [Huddleston02]) call theholistic aspect of generative theories.
And this is one of the main drawbacks of such theories. For example, taking into ac-
count the different uses of a language (for example spoken language) usually leads to
deal with partial information. This means the necessity of interpreting sub-parts of the
description system, which is incompatible with the generative model. An alternative
approach consists in representing linguistic information in a decentralized way. In this
case, each information is autonomous in the sense that it can be evaluated indepen-
dently from the entire system. Constraints can then constitute an interesting alternative
to classical approaches both for theoretical and computational reasons. Because of its
flexibility (representation of partial information, no need of entire structures and non-
holistic representation), a fully constraint-based approach, as the one presented here,
makes it possible to describe any kind of input. Moreover, it becomes possible to take
into account the contextual aspect of the linguistic phenomena: the same object or the
same set of constituents can have different uses, different interpretations according to
their environment. In the same perspective, interpreting a specific construction usually
involve information coming from different sources (morphology, syntax, pragmatics,
etc.). This way of thinking linguistic information is adopted in some recent works, in
particularConstruction Grammars(see [Fillmore98]).

This paper proposes a new presentation of the Property Grammars approach (here-
after notedPG) that integrates the notion of construction. The first section describes the
basic units in PG. These objects, called constructions, represent both local and global
information, the global one being represented in terms of constraints. The second sec-
tion presents the notion of property in syntax. This section shows in what sense any kind
of linguistic information can be represented by means of constraints. The last section
addresses the question of long distance dependencies, illustrating the fact that using
constraints and constructions constitutes an efficient and simple way of representing
linguistic information.

2 Constructions in PG

The notion of construction, as presented in the Construction Grammars paradigm (see
[Fillmore98], [Kay99]), consists in bringing together different parts of linguistic in-
formation, making it possible to describe specific or marked phenomena in terms of
interacting properties. More precisely, a construction specifies a set of constituents plus
different values or relations that these constituents bear. Any kind of information (in
particular coming from syntax and semantics) can be used in such structures. All ob-
jects can be described in terms of constructions: lexical categories as well as phrases
or specific syntactic phenomena. One of the interests of this notion is the possibility of
representing directly contextual phenomena. We propose in the following a PG version
of the notion of construction.

Generally speaking, it is necessary to distinguish between two different types of
information: the one specific to the object (also called local information, or form) and
the relations between the different components of the object, expressed in terms of
properties or constraints (see next section). A construction in PG is then a triple ¡L, F,

P¿ in which L is the label of the construction, F its local information and P the properties
representing relations between its components:

Label
FORM (feature structure)
PROPERTIES(constraints)

The form of the construction is represented by a feature structure. This structure
is not fixed; the ones presented in this paper are a proposal among other possibilities.
The important point is that this structure does not contain directly information about
the constituents. Its role consists in instantiating different feature values, eventually by
propagating some information from the relation side, as it will be shown later. In this
version, we propose a basic repartition into syntactic and semantic features that can
be completed by features coming from other domains. The structures are typed, which
makes it possible to specify different forms according to the construction.

The following figures present the basic structures of two lexical constructions: the
noun and the verb (we only show in these examples the Form part of the constructions).
We make use in these structures of a very basic representation, making it possible to
specify on the one hand the argument structure (a syntactic information) and a predica-
tive structure (a semantic one). These values are not appropriated for all lexical con-
structions. For example, the adverb construction doesnt bear such structures. Moreover,
when the feature is appropriated to a type, its form can vary (as it is the case between
nouns and verbs).

V

FORM

SYNT

AGR

[
GEND g
NUM n
PERSp

]

ARG S

[
SUBJs
COMP1 c1
COMP2 c2

]

SEM

PRED S

RELN n
AGT a
PATP

REC c

N

FORM

SYNT

AGR

[
GEND g
NUM n

]
ARG S

[
SPECs

]

SEM

[
PRED S

[
REF r

]]

The argument structure is indicated in order to specify for a given construction its
subcategorization schema. We will see that this information is also implemented by
means of a property (requirement). At this stage, it is used in order to implement, if
necessary, some semantic restrictions (for example lexical selection). In the case of the
noun, this feature implements the subcategorization of the determiner as a specifier. As
for the verb, we consider the subject and two complements as the basic structure. The
predicative structure bears the basic roles. We consider for the verb the following ones:
agent, patient and recipient, plus the relation name.

A construction is then a set of information describing a category, a phrase, a specific
phenomenon. In other words, a construction is the general description of a particular
phenomenon. The description of a given input is done by means of a set of construc-
tions that are instantiated according to the input. An instantiated construction is called

an object and can be used as a constituent of other constructions. More precisely, acti-
vating a construction results in inferring that the described object (referred by the label)
is considered as realized. This means, from an operational point of view, that the object
corresponding to the label is instantiated and added to the set of objects to be taken into
consideration (this aspect will be detailed later). In the following, objects (or instanti-
ated constructions) are indicated by means of an index.

The following example illustrates the NP construction. The form of the construction
is specified by means of a feature structure indicating some syntactic and semantic
properties (again, this structure can be modified in function of specific requirements).
We will present in the next section more precisely the notion of property. One can
already note in this representation the relations between the constituents and feature
values, in terms of structure sharing. For example, the semantic referential feature takes
as value the semantic value of the noun N1, one of the constituents of the construction.

NP

FORM

SYNT

[
AGR N1 .FORM.SYNT.AGR

HEAD N1 .FORM.SYNT

]
SEM

[
PRED S

[
REF N1 .FORM.SEM

QUANT Det1 .FORM.SEM.QUANT

]
MOD AP1 .FORM.SEM

]

PROPERTIES

Const =
{

Det1,N1,AP1,PP,Pro
}

Det≺ N1, N1 ≺ PP

Oblig =
{

N1,Pro
}

Properties will be presented in detail in the next section. Roughly speaking, the
one presented here describes the list of constituents, the linearity and the possible
heads of the construction. References to feature values are indicated by means of a
path in the object. In order to simplify notations, paths are indicated in reduced forms
when there is no ambiguity (for exampleN.AGR instead ofN.FORM.SYNT.AGR). In
the same way, for simplicity reasons, we note an object by its label instead of the
entire path towards the constituency property (for example, we note N1 instead of
NP.PROPERTIES.CONST.N1). We can also notice the use of aMOD feature in order
to represent modification which comes from the adjective (or, for the VP, from different
modalities such as modal verbs, negation, etc.).

As it is usually the case, constructions are typed; the types being structured into
a hierarchy. A type specifies for a given construction some characteristics in terms of
features (the appropriate features in HPSG) and relations. The inheritance hierarchy is
explicit: a construction specifies from what other construction it inherits. In the example
of the figure (3), the subject-auxiliary construction is a specification of the verb phrase
in the sense that all properties of the VP also apply to this construction. Some of them
are overridden, which means that a property can be replaced by another one which is
more specific (as it is the case in an object-oriented paradigm).

VP

FORM

SYNT

[
AGR V1 .AGR

HEAD V1 .SYNT

ARG S
[

SUBJs
]]

SEM

[
PRED S

[
RELN V1 .RELN

AGT a

]]

PROP

Const =

{
V1,Aux,Adv

}
Det≺ N1, AdvP≺V1

Oblig =
{

V1

}
Uniq =

{
V1, Aux

}

VP trans
INHERITS VP

FORM

SYNT

[
ARG S

[
COMP1 s

]]
SEM

[
PRED S

[
RELN V1 .RELN

AGT a

]]

PROP

Const =

{
V1,Aux,Adv

}
Det≺ N1, AdvP≺V1

Oblig =
{

V1

}
Uniq =

{
V1, Aux

}

3 The Properties

The basic syntactic information corresponds to some regularities that can be observed
and described separately. The kind of information presented in the following list illus-
trates this point:

– words follow a certain (partial) order
– some words are mutually exclusive in a close context
– some words systematically coocur in a close context
– some words cannot be repeated in a close context
– the form of some words co-varies in a close context
– the realization of some words is more facultative than some others

In PG, the idea consists in specifying each kind of such information by means of a
distinct constraint. The remaining of the section proposes a presentation of the different
types of constraints (see also [vanRullen03] for a slightly different presentation of the
notion of property). We use for the property description the following definitions:

- letK be a set of categories, letA be a subset of categories corresponding to a given
input,

- let pos(C,A) be a function that returns the position ofC in A,
- let card(C,A) be a function that returns the number of elements of typeC in A,
- let {C1, C2} ∈ K,
- let comp(C1, C2) be a function that verifies the semantic compatibility ofC1 andC2

and complete the semantic structure ofC2 with that ofC1.

3.1 Precedence

The linear precedence relation stipulates explicitly the order relations between the ob-
jects. These relations are valid inside a context.

Def: C1 ≺ C2 is satisfied forA iff pos(C1,A) < pos(C2,A)

This property makes it possible to represent explicitly what is often done implicitly
(as for example in HPSG).

3.2 Constituency

This relation indicates for a given construction the set of categories (or constructions)
that are used in its description. This is then a classical description of constituency. How-
ever, in PG, this notion plays a very secondary role: it is theoretically possible to use any
kind of constituent for any construction. The only necessity is to distinguish between a
construction made only with licit constituents and another that could also contain other
constituents, violating then this constraint. The important point is that this constraint
does not have any priority over other constraints as in classical phrase structure gram-
mars. It is even possible not to use it without any deep consequence on the parsing
process itself.

3.3 Obligation

Among the set of constituents, some of them are required. This notion of obligation re-
covers partially that of head. However, it is always possible to have different categories
in this set.

Def: Oblig(C1) is satisfied forA iff card(C1,A) = 1

This notion of obligation makes it possible to identify specific elements that con-
stitutes in a certain sense the core of the construction. However, at the difference with
the notion of head, we do not consider that the status of obligatory element has con-
sequences on the government and semantic relations. It is possible for some non-head
elements within a construction to have direct relations. For example, within a NP, de-
terminers can have some restrictions on the adjuncts. At the semantic level, it can also
be the case that a dependency exists between two elements that are not heads. This is
another argument in favor of a separate representation of the various types of informa-
tion.

3.4 Uniqueness

This property indicates the categories that can be realized only once into a construction.

Def: Uniq(C 1) is satisfied forA iff card(C1,A) ≤ 1

This property has to be explicit for every elements, including the obligatory ones.

3.5 Agreement

This property is used to implement different kinds of agreement. The classical agree-
ment constraint consists in stipulating that two constituents of a construction must share
the same agreement features. This is represented by a relation specifying the kind of
features involved in the agreement and the objects concerned by the agreement. For ex-
ample, the number agreement between the determiner and the noun is implemented as
follows:

NP

PROP
{

Det↔[num] N
}

In some cases, the agreement value has to be propagated from a lexical construction
to a phrasal one, as for the agreement between adjective and nouns in French which is
stipulated between the N and the AP of a NP construction. In this case, the propagation
has to be implemented between the Adj and the AP constructions, which is directly
implemented as follows:

AP

FORM
[

AGR Adj1 .AGR
]

PROP

{
Oblig =

{
Adj1

}}
3.6 Requirement

This property specifies a mandatory cooccurrence between categories. This is in theory
a relation between sets of categories.

Def: C1 ⇒ C2 is satisfied forA iff C1 6∈ A or C2 ∈ A

This property is at the basis of the representation of the government relations. It can
be used to implement any kind of cooccurrency, using syntactic or semantic informa-
tion.

3.7 Exclusion

As the opposite of the requirement, exclusion stipulates cooccurrence restriction be-
tween categories. This property can be specified between sets of categories.

Def: C1 6⇔ C2 is satisfied forA iff {C1, C2} ∪ A 6= {C1, C2}

3.8 Dependency

This property stipulates a semantic dependency between different objects of the con-
struction. It is used to indicate how an object can fill the predicative structure of a
governor. It is important to note that dependency relations can be expressed between
any constituent of the construction, there is no specific need of specifying a semantic
head.

Def: C1 ; C2 is satisfied forA iff comp(C1, C2) holds

On top of this role, dependency is also used in order to implement semantic restric-
tions on the argument structure. This is done directly by specifying the corresponding
semantic feature in the restricted object. For example, if a verb specifies a restriction on
its arguments, it has to be indicated in the corresponding lexical construction:

V

FORM

[
SEM

[
PRED S

[
AGT restr1
PAT restr2

]]]
This information is then used by a dependency property between the complement

and the verb, specified into the VP construction:

VP

PROPS
{

NP[V1 .PAT.SEM] ; V1

}
This notation stipulates unification between the SEM values (more precisely the

restriction features in the semantic structure) of the verb and its direct NP complement.
In the same way, in order to implement the restriction between a verb and a subject,
it is necessary to propagate the subject restriction from the V to the VP construction.
It is done straightforwardly, without using any mechanism or propagation principle, by
structure sharing in the construction itself:

VP

FORM

[
SEM

[
PRED S

[
RELN V1 .RELN

AGT V1 .AGT

]]]
PROPS

{
Oblig =

{
V1

}}
A grammar in PG is then a set of constructions representing objects at any levels.

As seen above, each construction contains a set of properties (or constraints). We call
local constraint system (noted LCS) the set of properties specific to a construction.
But constraints can also be taken globally, independently from the construction view.
In this case, the set of all constraints without any direct reference to the construction
they belong to, forms a set called global constraint system (noted GCS). This kind of
polymorphism of constraints is at the basis of the parsing mechanism described in the
next section.

4 How do things work?

As explained in the introduction, our perspective is definitely descriptive in the sense
that a grammar is conceived as a tool for describing realized utterances. In such a per-
spective, the mechanisms have to be described starting from an input. We present in this
section the general architecture for PG explaining how descriptions of an input can be
built.

4.1 Characterization

One of the benefits of a constraint system is that it is possible to interpret its state after
evaluation. It is even the most important operation in PG. The mechanism consists, for
a given input, to identify and evaluate all the possible constraints of the grammar. More
precisely, starting from the input, all the possible categories (the lexical constructions)

corresponding to the lexical items of the utterance are activated. This notion of activa-
tion is central in PG, we will explain it in more details in the next section. Activating a
construction results in instantiating the corresponding object. At this stage, this means
that the initial set of objects is the set of the lexical constructions corresponding to the
words of the utterance.

Example: “Time flies like an arrow.”
- Set of initial categoriesΣ = {N1, Adj1, N2, V2, V3, Det4, N5}

Starting from this set, the idea consists in trying to identify the possible construc-
tions describing the input. For that, we take into consideration all the possible subsets
of lexical categories of the input with one restriction: no two categories referring to the
same position in the string can belong to the same subset.

Each of this subset is called an assignment, referring to the fact that we try to find
all assignments that satisfy a constraint system (in other words a construction). Such
an assignment can be then be composed by categories that are not necessarily juxta-
posed. Obviously, such a technique can be computationally very expensive, but such an
enumerative process can obviously take advantage of the constraint-based approach in
order to control the process.

Example: Σ = {N1, Adj1, N2, V2, V3, Det4, N5}
- AssignmentsA = {{N1,N2}; {N1,V2}; {N1,V2,V3}; {V3,Det4,N5}; {N1,V3}, ...}

For each assignment, the process consists in traversing the global constraint system,
in other words the set of all constraints specified in the grammar. For each constraint,
there are three cases: the constraint cannot be evaluated and is considered as not rele-
vant, the constraint is evaluated and satisfied, the constraint is evaluated and violated.
All the relevant constraints are stored into a set calledcharacterization1. It is possible to
adopt different strategies at this stage. One consists in building only positive characteri-
zations (i.e. characterizations only containing satisfied constraint). The other possibility,
which is much more powerful and well adapted to the treatment of unrestricted inputs,
including spoken language material, consists in building characterizations also contain-
ing violated constraints. This makes it possible to describe any kind of input, whatever
its form. Obviously, relaxing constraints has a computational cost (cognitively as well
as for an implementation), but it is the only way to explain why, even for native speak-
ers, the surface form can vary even in violating some constraints. Each assignment, after
this first stage, can be associated to a set of evaluated properties: a characterization is
formed by an assignment plus a set of evaluated properties. For simplicity reasons, in
the following examples, we represent some properties by means of sets. For example,
the notationUniq(Det, N, Adj)replaces the three corresponding properties of unicity.

Example: “ the book red”

1 Marie-Laure Gunot in her PhD work suggests to add a third type of constraints in the character-
ization: the one for which some categories (not all) involved in the constraint do not belong to
the considered assignment. These constraints cannot be evaluated because not all constituents
are present, but they can be said to be semi-activated.

Assignment Properties
{Det1, N2} P+={Det≺N; N⇒Det; Uniq(Det,N); Oblig(N)}
{Det1, N2, Adj3} P+={Det≺N; N⇒Det; Uniq(Det, N, Adj); Oblig(N)}
. P−={Adj≺N}

Among the different possible assignments, two are presented in this example. The
first is positively characterized for linearity, the two realized constituents are unique,
there is a cooccurrence between the common noun and the determiner, a noun (one
of the obligatory constituents) is realized. The second assignment presents almost the
same set of satisfied constraints but also has a non empty set of violated constraint.

4.2 Construction activation

The second stage of the process consists in traversing again the grammar, adopting this
time the constructional view. Each characterization is compared to the local constraint
systems of the grammar (the property sets attached to the constructions). When a LCS
is subsumed by a characterization, the corresponding construction is said to be acti-
vated, which means that it is added to the set of object to take into consideration for the
description. At this stage, the LCS is re-evaluated for the assignment in order to take
into account (if necessary) some constraints specific to the construction or higher-level
constraints. As mentioned before, it is not necessary to satisfy all constraints of a LCS
in order to activate the corresponding construction, some can be violated

Example: “Dans la marine tu as short blanc chaussettes blanches”
(In the navy you have white short, white socks)

In this utterance (taken from a spoken French corpus), both NP complements violate
a requirement constraint: in the French NP, determiners are mandatory with a common
noun. Both characterizations contain then a violated constraint, but in spite of this, the
NP construction is activated.

The same assignment can activate several constructions. Some of them are compati-
ble (typically the one belonging to the same inheritance hierarchy), some others are not.
In theory, all the possible constructions are activated, without taking into account the
whether they are concurrent or not. When several activated constructions belong to the
same branch of the type hierarchy, only the most specialized (the lowest in the hierar-
chy) is activated: the inheritance relation replaces the necessity of activating the entire
hierarchy. When two constructions belong to different branches of the type hierarchy,
both are activated and form a potential constituent of higher-level constructions.

When a construction is activated, the corresponding constituent is considered as
realized and added to the set of constituents (in fact the set of labels referring to con-
structions). This set was initially formed by the constructions describing the lexical
categories, progressively, this set also contains any level constructions. From this set,
the same activating process is applied. This means that all the possible assignments
are generated, with the same restriction as for lexical categories: no two constructions
covering totally or partially the same substring of the input can belong to the same
assignment.

All these new assignments are to their turn characterized. The process is repeated
until no new construction can be activated. At the end, the input is described by means
of several constructions. When all constructions are positively characterized, there ex-
ists one construction (corresponding to the label S) that covers the entire input (pro-
vided that such construction belongs to the grammar, which is not imperative, unlike in
phrase-structure grammars). Otherwise, it can be the case that the input is described by
means of several distinct constructions. In other words, the syntactic description of an
input can be formed with a set of juxtaposed but non connected descriptions. This kind
of representation is very useful for the description of unrestricted texts.

5 Unbounded dependencies

Unbounded dependency is one of the difficult phenomena to take into account whatever
the theory. Its description makes use of some local properties describing the origin of the
dependency (for example a cleft) plus other relations for the dependency itself between
the origin and its site. Usually, the mechanism consists in propagating some information
through a structure. This kind of process requires, by definition, to build a structure
covering the entire input, or at least the domain of the dependency. As explained before,
this is not always possible, in particular when the input is not canonical; in this case,
several non connected constructions are used for the description, which forbids any
propagation. Moreover, the propagation requires specific mechanisms (implementing
the propagation itself as well as the control of the process).

In PG, any specific information is represented by means of constraints or set of
constraints attached to a construction. The problem is that only part of the information
is possibly represented by means of one construction. One solution could have been to
describe the long distance dependency in terms of discontinuity. The problem, as with
all other formalisms, is that the form of the construction, in particular its constituents,
is not known a priori. Another solution has then to be found.

In the general case, dependencies are introduced by specific syntactic phenomena,
with morpho-syntactic marks such as cleft, relatives, etc. In this situation, a specific
construction is given for the description of what can be identified as the origin of the
dependency. But, together with this construction, one can already identify some speci-
ficities or restrictions concerning the site of the dependency. The following example
presents the case of a cleft PP.

Example: “ It is on the table that John put the book.”

The grammar contains a specific construction describing the cleft itself, with its
morpho-syntactic properties:

Cleft PP

SEM
[

FOCUSPP1 .SEM
]

PROPS

Const =

{
Pro[it], V[be], that, PP1

}
Pro≺ V, V ≺ PP1, PP1 ≺ that
Pro⇒ V

Uniq =
{

PP
}

As it is the case with other constructions, the identification of the corresponding
properties activates the constructionCleft PP. It is now possible to use this new object
in the rest of the description. In the case of a cleftPP, the only possibility is to have
thePPextracted from aVP. In this case, it is necessary first to indicate that thePPfills
a syntactic and semantic argument in theVP structure and second to forbid to realize
anotherPP in the sameVP. We create for this a specific construction specific to aVP
from which thePPhas been extracted. We call this constructionVP CleftPP, it inherits
from theVP type and is represented as follows:

VP CleftPP

FORM

SYNT

[
ARG S

[
COMP2 Cleft PP1 .PP.SYNT

]
SEM

[
PRED S

[
REC Cleft PP1 .PP.SEM

]]]
PROPS

{
Const =

{
Cleft PP1

}
V 6⇒ PP

}

This construction is activated when aCleft PP is realized. It is not necessary to
indicate more information than that or to use a specific propagation mechanism through
the structure in order to implement relations between the cleft elements and the site of
the dependency. In the case of a cleftPP, the site of the dependency is aVPsemantically
and syntactically compatible with such an argument and that has not yet realized this
argument. More precisely, thisVP should have a verbal constituent licensing aPP as
complement (i.e. as aSYNT | ARG S | COMP2 value) and as a recipient argument of
the predicative structure (i.e. theSEM | PRED S | REC value). The link between the
extracted element and the arguments values that it fills in the site of the dependency
(the VP) is implemented by the fact that theCleft PP1 is the only constituent of the
construction. This object, notedCleft PP1 in the construction, contains by definition a
PP as constituent, the one that has been extracted. The link between the semantic and
syntactic characteristics of thisPP and the corresponding feature values to be filled in
theVP in order to specify the dependency is then directly implemented.

Moreover, the exclusion constraint between the verb and anotherPP also has to
be satisfied. The fact that aPP can only be extracted from aVP is controlled by the
constituent property of theVP CleftPP construction. During the parse, it can be the
case that different VP construction can be a potential site for the dependency as soon
as it satisfies the corresponding constraints and restrictions. This is a case of ambiguity
that necessitates information coming from other domains (for example pragmatics or
prosody), but no more information from the morpho-syntactic domain has to be given
at this level.

The same kind of description can be given for aNP complement extraction. In this
case as well, the cleft part of the construction is described by means of theCleft NP
construction indicating the morpho-syntactic properties. This construction is to its turn
the only constituent of theVP CleftNPconstruction which indicates how theNP that
has been cleft fills the different syntactic and semantic roles of theVP.

Cleft NP

FORM

[
SEM

[
FOCUSNP1 .SEM

]]
PROPS

Const =

{
Pro[it], V[be], that, NP1

}
Pro≺ V, V ≺ NP1, NP1 ≺ that
Pro⇒ V

Uniq =
{

NP
}

VP CleftNP

FORM

SYNT

[
ARG S

[
COMP1 Cleft NP1 .NP.SYNT

]
SEM

[
PRED S

[
REC Cleft NP1 .NP.SEM

]]]
PROPS

{
Const =

{
Cleft NP1

}
V 6⇒ NP

}

In order to simplify notations, the different cleft constructions can be organized into
a type inheritance hierarchy making it possible to group the common characteristics of
the cleft construction as follows:

Cleft
FORM x

PROPS

{
Const =

{
Pro[it], V[be], that

}
Pro≺ V
Pro⇒ V

}
Cleft NP
InheritsCleft

FORM

[
SEM

[
FOCUSNP1 .SEM

]]
PROPS

Const =
{

NP1

}
V ≺ NP1, NP1 ≺ that

Uniq =
{

NP1

}

Cleft PP
InheritsCleft

FORM

[
SEM

[
FOCUSPP1 .SEM

]]
PROPS

Const =
{

PP1
}

V ≺ PP1, PP1 ≺ that

Uniq =
{

PP1
}

6 Conclusion

During the last decade, the place of the notion constraints moved from the peripheral to
the core of linguistic theories. Constraints are now not only a control mechanism used
in order to refine analysis, but they can be conceived as an approach in itself. In fully
constraints-based theories such as Property Grammars, there is no distinction between
the representation and the control levels, which also means the possibility of a direct
interpretation (cf. [Dahl04]). Constraints are used in order to represent the information
and to build the structure: a grammar is a constraint system, an analysis is the state of
the constraint system after evaluation for a given input. Such system can contain both
satisfied and violated constraints, which makes the method adapted for dealing with
unrestricted inputs, included spoken language material.

One of the challenges now is to show in what extend fully constraint-based ap-
proaches such as Property Grammars can constitute an actual language theory. Many
aspects are to be explored in this perspective. First, it is necessary to explain in an ho-
mogeneous framework how the different linguistic domains (prosody, pragmatics, etc.)
can interact. In our approach, any kind of constraints can be stipulated in the LCS.
This means that each construction can have in its property part constraints describing
the different domains. The interest of using constraints is that there is no need to ex-
press interaction in terms of correspondences between structures. The second kind of
work, under experimentation for PG (see [Blache04]), concerns cognitive aspects. In
particular, it seems possible to quantify some element of information useful in the char-
acterization of the notion of complexity. In both cases, preliminary results show that
constraints are not only a powerful way of representing linguistic information, they can
also constitute the basis of a cognitive theory.

References

[Bès99] B̀es G & P. Blache (1999) “Propriét́es et analyse d’un langage”, in proceedings of
TALN’99.

[Blache01] Blache P. & J-M. Balfourier (2001). “Property Grammars: a Flexible Constraint-
Based Approach to Parsing”, in proceedings ofIWPT-2001.

[Blache00] Blache P. (2000). “Constraints, Linguistic Theories and Natural Language Process-
ing”, in Natural Language Processing, D. Christodoulakis (ed), Lecture Notes in Artificial
Intelligence 1835, Springer-Verlag

[Blache04] lache P. & J.-P. Prost (2004) “Gradience, Constructions and Constraint Systems, in
proceedings of theCSLP Workshop

[Croft03] Croft W. & D. Cruse (2003)Cognitive Linguistics, Cambridge University Press.
[Dahl04] Dahl V. & P. Blache (2004) “Implantation des Grammaires de Proprits en CHR”, in

proceedings ofJFPLC’04.
[Fillmore98] Fillmore C. (1998) “Inversion and Contructional Inheritance”, inLexical and Con-

structional Aspects of Linguistic Explanation, Stanford University.
[Gazdar85] azdar G., E. Klein, G. Pullum & I. Sag (1985),Generalized Phrase Structure Gram-

mar, Blackwell.
[Goldberg95] Goldberg A. (1995)Constructions: A Construction Grammar Approach to Argu-

ment Structure, Chicago University Press.
[Huddleston02] uddleston R. & G. Pullum (2002)The Cambridge Grammar of English Lan-

guage, Cambridge University Press.
[Kay99] Kay P. & C. Fillmore (1999) “Grammatical Constructions and Linguistic Generaliza-

tions: thewhat’s x doing yconstruction”, Language.
[Keller03] Keller F. (2003) “A probabilistic Parser as a Model of Global Processing Difficulty”,

in proceedings ofACCSS-03
[Kempson01] empson R., W. Meyer-Viol & D. Gabbay (1999) DynamicSyntax, Blackwell.
[Langacker99] Langacker R. (1999),Grammar and Conceptualization, Walter de Gruyter.
[Pollard94] Pollard C. & I. Sag (1994),Head-driven Phrase Structure Grammars, CSLI,

Chicago University Press.
[Maruyama90] aruyama H. (1990), “Structural Disambiguation with Constraint Propagation”,

in proceedings ofACL’90.
[Prince93] Prince A. & Smolensky P. (1993), Optimality Theory: Constraint Interaction in Gen-

erative Grammars, Technical Report RUCCS TR-2, Rutgers Center for Cognitive Science.
[Sag99] Sag I. & T. Wasow (1999),Syntactic Theory. A Formal Introduction, CSLI.
[vanRullen03] . VanRullen, M.-L. Gunot & E. Bellengier (2003) Formal Representation of Prop-

erty Grammars, in proceedings of ESSLLIStudent Session

