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It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing
and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms—such as self-sustained or propagating activity
and nonlinear summation of inputs—do not directly give rise to high-level functions. Nevertheless, they already implement simple
the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working mem-
ory, or selective attention, stem from different combinations and types of low-level manipulations of information or information
processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neu-
ral circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information
dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively
buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find
that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by
their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics,
beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is,
through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.
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Significance Statement

We can easily name brain functions, and we are well informed about brain structure. However, it is not easy to bridge the gap
between the two. Part of the problem is that simple circuit mechanisms do not directly give rise to high-level functions. Yet,
they already implement simpler forms of information processing, a sort of “neural assembly language.” Here, we track such
primitive operations of processing using metrics from information theory and benchmarking them on functional simulations.
We thus prove that these metrics can reveal the different flavors of information processing involved in different well-defined
functions (working memory, selective attention, etc.). We thus transform descriptions of neuronal dynamics into descriptions
of how these dynamics specifically propagate and modify information.
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Introduction
In a seminal proposal, David Marr observed that a neural system
can be described at three different levels: (1) the functional level
“at which the nature of a computation is expressed,” (2) the algo-
rithmic level “at which the algorithms implementing a computa-
tion are characterized,” (3) the structural level “at which the
mechanisms are realized in hardware” (Marr and Poggio, 1976;
see Fig. 1A for graphical cartoons of these levels). The third level
is directly accessible to experimental investigation: the structure
of neural circuits (Helmstaedter et al., 2013; Markov et al.,
2014), and their activity has beenmeasured across different scales
with a variety of techniques. Likewise, one can identify the resulting
function, such as sensory representation, working memory, or
selective attention, and measure the associated cognitive and beha-
vioral performance. However, the quantitative definition of the
algorithmic level still poses challenges. The assumption is that it
comprises information processing operations, which are intermedi-
ate steps to produce meaningful functional computations.

Various attempts have been made to identify such canonic
computations. Some remain closely inspired by the structural
level, emphasizing the role of connectivity motifs (Carandini
and Heeger, 2011; Miller, 2016). Others propose to decompose
cognitive processes into simpler constituents shared across mul-
tiple functions (Taatgen, 2013; Saban et al., 2021). Here, we pro-
pose to directly track how patterns of neural activity give rise to
emergent transformations of information. Information theory
provides the tools to quantify the amount of information in a
set of observed signals (Shannon, 1948). Beyond that, recent

developments in the frameworks of information dynamics
(Lizier, 2013) and partial information decomposition (PID;
Williams and Beer, 2010; Wibral et al., 2017) permit the assess-
ment of how such information is propagated and transformed.
We define a (nonexhaustive) list of low-level operations
—“buffering,” “transferring,” and “integrating”—which high-
lights different ways to handle raw information, defined here as
information processing primitives (IPPs; see Fig. 1B for cartoons
of a proposed set of primitive operations). We then present a
rich toolset of information-theoretical metrics to quantify the
enactment of specific IPPs (see Fig. 1C for a list of these metrics,
matching the IPPs of Fig. 1B): we evaluate these metrics on sim-
ulated time series produced during the execution of tasks probing
certain functions and measure which IPPs are required for their
implementation, that is, an algorithmic decomposition of the task.

The advantage of data simulated with computational models
is arbitrarily many trials in fully controlled dynamical conditions
without fluctuating brain states (Shine et al., 2016; Grossman et
al., 2019) and a controllable noise level. Our models of choice
are neural circuits composed of coupled ring networks.
Multi-ring circuits with a known architecture (third Marr's level)
can be tailored to implement specific goal function (first Marr's
level), so that we can study the IPPs enabled by their dynamics
(second Marr's level). Although stylized, they retain important
features of cortical connectivity, such as spatial modulation of
excitatory–inhibitory recurrent interactions. Ring networks
were introduced to study feature-selective representations
(Ben-Yishai et al., 1995) and produce a rich spatiotemporal

Figure 1. Notions of algorithmic level and information processing primitive operations. A, Neural circuits can be analyzed at three different levels (Marr and Poggio, 1976), here presented from
top to bottom: the high-level function performed by the circuit (i.e., the final cognitive operation, first functional level, top); the nature of the circuit components (neuronal types, etc.) and
the anatomical wiring between them (third structural level, bottom); and the second algorithmic level of the raw information processing, bridging between circuit structure and function (middle).
B, IPPs are elementary algorithmic-level operations performed on streams of information conveyed by neuronal activity, which are involved in building up different functions. IPP's complexity
increases from bottom to top. C, The occurrence of such IPPs can be directly tracked and quantified from neural activity data with the corresponding suitable information-theoretical functionals,
the metrics used in this paper.
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variety of dynamic patterns (Roxin et al., 2005, 2006). Multiple
rings can be coupled to account for interactions between multiple
cortical layers, columns (Stetter et al., 2000; Battaglia and Hansel,
2011), or even brain regions. Ardid et al. (2007, 2010), for
instance, used a network composed of two coupled rings, repre-
senting sensory and frontal cortical modules, to model the atten-
tional modulation of responses to oriented visual stimuli. We
capitalize on these studies to perform simulated functions: (1)
the generation of sensory responses and their maintenance in
working memory; (2) the propagation of sensory responses
across cortical regions; and (3) the selective attentional modula-
tion of these responses as an effect of top-down influences.

To validate our IPP approach beyond generic and ad hoc con-
strained ring models, we additionally analyze stimulus-evoked
activity in a large-scale, realistic connectome-based model
(Joglekar et al., 2018) reproducing some of the circuit mechanisms
seen in the ring models (and the associated algorithmic effects).

We provide a proof-of-concept demonstrating algorithmic
decompositions on controllable dynamics withwell-identified func-
tions. We demonstrate that data-driven information-theoretical
metrics are suitable to capture IPPs involved in different func-
tions and to identify which circuit units are participating in
specific types of information processing at different spatial posi-
tions or times. The proposed framework may thus be suitable for
probing the inner workings of actual cognitive processes in elec-
trophysiological or neuroimaging recordings.

Models and Methods
We begin with a description of the basic computational model used in
this study to reproduce tuned sensory responses, working memory, sig-
nal propagation through a hierarchy of areas, and the modulatory effects
of selective attention on sensory responses. Then, we specify three setups
demonstrating different types of low-level information processing
underlying emulated functional computations. Finally, we detail the
IPPs (low-level IPPs) that characterize different types of basic informa-
tion transformations. A graphical summary of the IPPs at the functional
level and the corresponding metrics is given in Figure 1, B and C. All
abbreviations are summarized in Table 1, and all model parameters for
the circuit module are presented in Figure 2, and the different numerical
experiments performed in Figures 3–5 are specified in Table 2. Table 3
gives the list of regions included in the large-scale model, and Table 4
the parameters of the connectome-based simulations.

Computational model of one region: ring network model
The building block of all ring networks studied here is the rate model ver-
sion of the one-dimensional ring network with delayed interactions ana-
lyzed by Roxin et al. (2005, 2006); see Figure 2A. The one-ring network

provides a canonical model for a feature-selective cortical module (e.g., a
visual cortex hypercolumn). In the ring rate models, the activity of N
coupled nodes (also called units) is characterized by their firing rates
Rk(t), k= 0…N−1. The total input to each node k is a linear combination
of the activity of all presynaptic nodes, an external stimulus, and the aver-
age value of the external drive Iext, indicated In Table 2, is set to have a
baseline stationary rate equal to Rk(t) =∼0.1. In addition, each node
k also receives a noisy component ηk(t) drawn independently at every
time and for every node from the uniform distribution over the interval
[−0.5, 0.5] Iext.

Each node may receive additional external input Istim at certain times,
associated with the presentation of an external stimulus. Such stimulus
current is spatially localized to model the nodes’ stimulus selectivity.
We choose a Gaussian kernel (compare Fig. 2B) of prescribed maximum
amplitude Astim and width σstim, centered at a position Spos≘ θstim, which
varies across different simulated trials. The stimulus time course is given
by a function S(t), equal to one during stimulus presentation and zero
otherwise.

The time evolution of the activity of each node is governed by a
first-order delay differential equation with time delay D involving a
threshold-linear input–output transfer function Φ(x) = x if x > 0 and
Φ(x) = 0 otherwise:

dRk

dt
= −Rk(t) + F Iext + hk(t) + Istim(k t) +

∑
l=k

JklRl(t − D)

( )
.

We consider rings of N= 100 nodes, where each node k is labeled by its
angular position on the ring θk= 2πk/N, k= 0, 1…N−1, coupled to all
other nodes l≠ k through a distance-dependent coupling kernel Jkl,
depending on the angular distance between nodes:

Jkl = J0 + J1 · cos(Dukl) with Dukl = 2p(k− l)/N

for the link between nodes k and l. The coefficients J0 and J1 control the
spatial modulation and the net sign of interactions (excitatory or inhib-
itory) between nodes. Figure 2C shows an example of a coupling kernel
for the parameters J0 = 0 and J1 = 1, resulting in excitatory short-range
interactions with nodes within a range −π/2≤Δθkl≤ π/2, and inhibitory
long-range (lr) interactions with nodes farther away, that is, |Δθkl| > π/2
(“Mexican hat” profile).

Dynamical regimes of the ring model and properties of stimulus response
The ring network exhibits a rich spectrum of dynamical states, depend-
ing on J0 and J1. Figure 2D (top) shows a schematic phase diagram. The
model exhibits a stationary fixed-point solution for small coupling values
J0 and J1, corresponding to an asynchronous regime in which the average
firing rate is constant in time and spatially homogeneous in the absence
of external stimuli [stationary uniform (SU) regime]. When modifying J0
and J1, the SU regime loses stability. For large J0 or J1, the firing rate of
every node explodes toward infinitely large values, as the chosen

Table 1. List of abbreviations

Abbreviation Full name Explanation

SU Stationary uniform Dynamical state with spatially homogeneous activity
SB Stationary bump Dynamical state with spatially inhomogeneous activity
3FF Three feed-forward coupled rings Setup to demonstrate information transfer
2RC Two reciprocally coupled rings Setup to demonstrate information integration
FR Firing rates Ring model output
MI Mutual information Information-theoretical measure
TE Transfer entropy Information-theoretical measure
H Entropy Information-theoretical measure
GCMI Gaussian copula mutual information Alternate method to calculate MI, TE, and H
att-ON Attention-ON state Configuration of the 2RC setup
att-OFF Attention-OFF state Configuration of the 2RC setup
GBA Global balanced amplification Increase in long-range excitation and local inhibition
FLN Fraction of labeled neurons Fraction of neurons labeled by the tracer between a given source and target area.
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threshold-linear transfer function does not saturate. When J0 < 0, that is,
on average negative collective interactions, there is a finite range of pos-
itive J1 Mexican hat modulation, for which the system's activity sponta-
neously gives rise to localized bumps of activity. These are centered at
some stochastically selected angular position (spontaneous symmetry
breaking or “Turing instability”) and surrounded by silent nodes [sta-
tionary bump (SB) regime]. When the average interaction level becomes

strongly inhibitory for J0 ≪ 0, the SU regime undergoes a transition
(“Hopf instability”) to a regime in which the firing rates oscillate homo-
geneously and in phase. This oscillatory uniform regime and other possi-
ble regimes (such as traveling waves) are not further explored in this
study.

We focus on SU and SB regimes, notably on their responses to exter-
nally presented stimuli (Fig. 2D, bottom). In the absence of a stimulus,
the activation in the SU regime is uniform throughout the network.
Upon stimulus presentation at an angle θstim, a bump of stronger activity
centered on θstim develops due to the locally increased excitatory drive.
This silences the surrounding nodes outside of the bump via lateral inhi-
bition. Such a bump can be seen as a representation of the presented sti-
mulus, as its position along the ring follows the stimulus’ angle. Once the
stimulus ends, that is, the additional Istim input goes back to zero, the
bumps dissolve, and activity relaxes back to uniform (fading encoding,
Fig. 2D, bottom left).

The situation is different in the SB regime where a spontaneously
generated bump is already present before the stimulus occurs. In SB,
the effect of presenting an externally oriented stimulus is the displace-
ment of the previously existing bump, moving it to the location corre-
sponding to the stimulus angle θstim. Once the stimulus is removed,
the evoked bump continues to exist, because it is self-sustained by local
recurrent excitation. It persists for a certain time (persistent encoding,
Fig. 2D, bottom right), before noise may cause it to drift. In the following,
we perform simulations at selected working points within the SU and the
SB regimes (see Table 2 for our parameters). Note that the parameters
Astim and σstim of the stimulus are chosen and tuned in a way that the
bump evoked by a stimulus in said SU working point has a similar width
and amplitude to the bump arising in the SB working point, such that the
results obtained from simulations in the two regimes are comparable.

Multiregional architectures: coupled ring networks
To model circuits involving more cortical modules, we use networks
composed of multiple coupled rings. Each ring is modeled as the previ-
ously described single-ring architecture with the possibility to tune

Table 2. List of parameters for ring model simulations

Parameter Description Values Remark

δtint Integration time step 0.01 Arbitrary units
δt Time step for the analysis 10 δtint
D Delay between ring units 1 δt
Dlr External delay between rings 2 δt
dt Time delay for MI analysis 40 δt For binning
N Number of units 100 0 to 99
ν Noise 50% Relative to the external drive
J0 for SU state Internal coupling −30 SU activity
J1 for SU state Internal coupling −8 SU activity
J0 for SB state Internal coupling −25 SB activity
J1 for SB state Internal coupling 11 SB activity
Alr External forward coupling strength 35 for 3FF rings
σlr External forward coupling width 3 nodes For 3FF rings
Alr External forward coupling strength 15 For 2RC rings
σlr External forward coupling width 3 nodes For 2RC rings
Alr External backward coupling strength 23 For 2RC rings
σlr External backward coupling width 6 nodes For 2RC rings
Astim Constant stimulus amplitude 2.0 Rate S(t) units
σstim Stimulus width 8 nodes
Spos (4 features) Stimulus injection position 0, 25, 50, 75 For one ring and 3FF rings
Spos (1 feature) First stimulus position 50 For 2RC rings
Spos2 (10 features) Second stimulus position 0, 10, … 90 For 2RC rings
tON Stimulus onset 100 δt For one ring and 3FF rings
tOFF Stimulus offset 250 δt For one ring and 3FF rings
tend End of simulation 450 δt For one ring and 3FF rings
tON First stimulus onset 110 δt For 2RC rings
tOFF First stimulus offset 310 δt For 2RC rings
tON2 Second stimulus onset 460 δt For 2RC rings
tend2 End of simulation 610 δt For 2RC rings

Table 3. List of regions included in connectome-based model simulations

Included regions

V1, V2, V4, DP, MT, 8m, 5, 8l, TEO, 2, F1, STPc, 7A, 46d, 10, 9/46v, 9/46d, F5, TEpd, PBr, 7m,
7B, F2, STPi, PROm, F7, 8B, STPr, 24c

Table 4. List of parameters for large-scale connectome-based model simulations

Weak GBA Strong GBA

vEI [pA/Hz] 12.5
vII [pA/Hz] 12.5
vEE [pA/Hz] 24.3
mEI [pA/Hz] 24.3
bE/bI 0.066/0.351
rBGE/rBGI 10/35
r(0)E/r(0)I 10/35
tE/tI 20/10
η 0.68
ti/tf [ms] 200/225
vIE [pA/Hz] 19.7 25/2
mEE [pA/Hz] 33.7 51.5
I(V1)E [pA/Hz] 41.90 21.93

For details on the mathematical formulation of the model and its parameters, see Joglekar et al., (2018) or the
aforementioned ReScience paper (github.com/ViniciusLima94/ReScience-Joglekar).
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different rings to different dynamical regimes and working points.
However, an additional current term Ilr must be fed to the transfer func-
tionΦ of each unit Rk to account for an additional drive provided by the
lr coupling to nodes in remote rings:

Ilr(k t) =
∑

q [ remote ring

WqkRq(t − Dlr)

where the lr connectivity kernel isWqk is a Gaussian with amplitude Alr

and width σlr centered on k, thus ensuring a strict spatiotopy of interre-
gional excitatory projections. Inter-ring interactions are also delayed and
can have an independently tuned, longer delay Dlr. We consider two
types of multi-ring architectures.

Three-ring network with feed-forward coupling. We study the prop-
agation of a stimulus representation through a hierarchy of different ring
modules (Fig. 4). To emulate the transfer of information from one area to
another, we couple three rings as a feed-forward chain (Fig. 4A), called
“3FF rings” setup (compare Tables 1, 2). The bottom ring (R1) represents
a sensory cortical area that receives subcortical stimulus-related input.
The middle ring R2 receives lr feed-forward input from R1, and the
top ring R3 from R2. The couplings from R1 to R2 and R2 to R3 have
identical strengths and widths. There is no feedback coupling in order
to study the capacity of information-theoretical metrics to capture the
processing operation of propagation and transfer through a directed
hierarchy.

Reciprocally coupled two-ring network. In a second circuit configura-
tion, two regions simultaneously interact via both feed-forward and feed-
back connections. The goal is to study the capacity of
information-theoretical metrics to track the effects of interacting
bottom-up and top-down inputs as occurring, for example, in selective
attention (Fig. 5). In this setup, called 2RC rings (compare Tables 1,
2), two rings are reciprocally coupled, similar to the model by Ardid et
al. (2007). The bottom ring R1 again constitutes a sensory cortical
area, while the top ring R2 represents a prefrontal cortical area. The latter
implements working memory, later acting as a source of top-down
influences. The parameters of feed-forward and feedback connections
are fine-tuned (Table 2) to obtain attention-like enhancements of stimu-
lus response.

Task simulations with the ring models
For the one-ring configuration of Figure 3 and for the 3FF ring setup of
Figure 4, we generate 1,000 trials with different noise realizations per
each of four possible orientations Spos of the stimulus, thus 4,000 trials
in total, for both the SU and SB working points. The stimulus injection
center positions Spos are equally spaced along the ring (at angles 0, π/2,
π, and 3π/2), alternating randomly from trial to trial. Time is measured
in arbitrary units δt (10 numeric integration steps per δt, fourth-order
Runge–Kutta integration scheme, augmented with delay). For all analy-
ses, we drop an initial period of 400 δt to discard early transients. In each
simulated trial, we first record 100 δt of baseline dynamics, before inject-
ing a stimulus, which is then maintained for 150 δt, that is, S(t) = 1 for
tON = 100 δt < t < tOFF = 250 δt, and S(t) = 0 otherwise.

For the analyses shown in Figure 5 (probing attentional modulation),
the task organization is more complex with two stimulus presentations:
the first stimulation at position Spos (“cue”) starts at tON= 110 δt and
stops at tOFF = 310 δt; the second stimulation at position Spos2 (“match”)
starts at tON2 = 460 δt and stops at tOFF2 = 610 δt. The cue position is fixed
in all trials at Spos = π, while Spos2 alternates randomly between 0 and 2π,
in steps of 2π/10. These stimulus combinations are generated for two
different conditions. The first condition is called “attention-OFF”
(att-OFF), mimicking empirical experiments in which no attentional
modulations are expected [as the receptive field of recorded neurons is
not attended to, i.e., the “unattended” condition described by Treue
(2001)]. In att-OFF, both the bottom ring R1 and the top ring R2 of
the 2RC setup are in SU state; thus, bump representations of cue and
match stimuli are formed during stimulus presentation and decay

thereafter. The second condition is called “attention-ON” (att-ON),
mimicking experiments in which attentional modulations of responses
are expected [as attention is directed to the receptive field of the recorded
neurons, i.e., the “attended” condition described by Treue (2001) and
Maunsell and Treue (2006)]. The information that attention must be
engaged toward the cue is provided shortly before cue presentation: at
time tswitch = 100 δt, the top ring R2 is moved from the SU to an SB
regime (parameters are detailed in Table 2). As a result of attention being
“switched on,” the top ring R2 maintains a persistent representation of
the cue through the entire delay period between the offset of the cue at
tOFF and the onset of the match stimulus at tON2. This working memory
representation interacts nonlinearly with the representation evoked by
the match in R1. To generate Figure 5, we run 5,000 trials for each Spos
and Spos2 combination, in both att-ON and att-OFF conditions.

Estimating information-theoretical quantities
We track the effects of neural function at the algorithmic level by
quantifying how simulated dynamic patterns translate into elementary
information transformations. All information-theoretical metrics we
introduce to detect the enactment of different IPPs can be seen as elab-
orations of a few basic quantities (Cover and Thomas, 2006). The
amount of information carried on average by observations of a random
variable X is quantified by Shannon Entropy:

H(X) = −
∑
x[X

P(x)log2P(x)

which is a functional of the empirical probabilities P(X ) of observing
different possible values of the variable X. Conditional entropy quantifies
the amount of information needed to describe the outcome of a random
variable X given that the value of another random variable Y is known, it
is defined as follows:

H(X|Y) = −
∑

x[Xy[Y

P(x, y)log2P(x | y).

The mutual information (MI) between X and Y quantifies the statistical
dependence between the two variables, and it is defined as the difference
between marginal and conditional entropies:

MI(X; Y) =H(X)−H(X|Y) =
∑

x[Xy[Y

P(x, y)log2
P(x, y)
P(x)P(y)

.

It describes the fraction of information, which is shared, that is, redun-
dantly encoded by both X and Y.

The conditional MI between X and Y conditioned on a third variable
Z is defined as follows:

MI(X; Y|Z) =
∑

x[Xy[Yz[Z

P(x, y, z)log2
P(x, y | z)

P(x | z)P(y | z)

providing the average amount of information redundantly carried by X
and Y, which is not already carried by Z.

A crucial step in evaluating any information-theoretical quantity is
the proper estimation of the empirical probability distributions of one
or more observables jointly. For most analyses of the results obtained
with the (coupled) ring models, we use “plug-in” or “direct” estimators,
biased for the small amounts of data typically available in neurophysio-
logical experiments but converging to stable values for large datasets. We
estimate histograms of firing rate variables using 24 equally spaced bins
(qualitatively analogous results are obtained using 18 and 32 bins).

For some other analyses (Fig. 6 and Fig. 4-1C), estimates are com-
puted using a semi-parametric Gaussian copula approach (Ince et al.,
2017). The Gaussian copula mutual information (GCMI) approach
exploits the fact that MI is invariant under monotonic transformations
of the marginals. This can be exploited to render the joint distribution
of Gaussian variables by means of local transformations on the margin-
als, using the so-called Gaussian copula. It involves calculating the
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inverse standard normal cumulative density function (CDF) of the
empirical CDF of each sample, separately for each input dimension.
Then, entropy values can be estimated using a standard covariance-based
formula for Gaussian variables. It includes a parametric bias correction
for estimates and an analytic correction to compensate for the bias due
to the estimation of the covariance matrix from limited data. GCMI is
a robust rank-based approach that allows the detection of any type of
relation as long as this relation is monotone. GCMI is computed using
functions implemented in the Frites Python toolbox (Combrisson et
al., 2022a,b). Finally, information-theoretical quantities are normalized
by the largest of the entropies of the involved variables [e.g., normalizing
MI(X; Y ) to MI(X; Y )/max(H(X(H(Y ))], so that they are bounded in the
unit interval and express relative fractions of information rather than
absolute amounts.

We now present in detail the specific information-theoretical quan-
tities that we use to define and track IPPs.

Tracking IPPs
We focus on a simple set of elementary processes of information manip-
ulation stemming from neural activity. To detect their presence and
quantify the degree to which different circuit nodes are engaged at differ-
ent times along the simulated tasks, we use the above
information-theoretical functionals. The simplest possible operation
one can perform with information is to carry it. Once a network node
carries some information it can keep carrying it actively for an extended
time, that is, it can buffer it, or it can push it to another network node,
that is, transfer it. The most complicated primitive operation we consider
is integrating multiple streams of information, that is, combining infor-
mation from multiple sources to reveal the existence of information that
was inaccessible prior to their combination. Figure 1B shows cartoons
illustrating these basic IPPs (in ascending order of complexity from bot-
tom to top), and Figure 1C lists the associated information-theoretical
functionals.

Note that the metrics we use to quantify IPPs have some limitations.
For instance, the functional to quantify transfer conflates into the esti-
mated quantity of “transferred” information (in quotes) a part of the
information conveyed by nonlinear and nonlocal synergies. We com-
ment on several of these limitations and drawbacks later in the
Discussion. For now, be aware that throughout the entire manuscript,
terms such as “buffering,” “transferring,” or “integrating” refer to noth-
ing more than the operative definitions provided in the following and
may thus not perfectly correspond to other formulations frommore elab-
orate theories.

The IPP of carrying information or local encoding of information:
entropy and MI. The average information carried by a network node
at time t is given by the functional H(R(t)), where the across-trial
firing rate R(t) (sampled at time t) is used to estimate the probability dis-
tribution P(R(t)). One can also evaluate the fraction of the information
carried relative to the presented stimulus, either by considering stimulus
presence or absence MI(R(t); S(t)), where S(t) is the spatially inhomoge-
neous stimulus time course, or the feature carried by the stimulus,
MI(R(t); Spos), where Spos is the stimulus’ orientation angle. Both MI
terms are then normalized by H(R(t)) to be expressed in relative form.

The IPP of buffering information: active information storage. A cir-
cuit node buffering information continues carrying some information,
which was already present. This primitive processing operation can be
quantified by active information storage (AIS; Lizier et al., 2012;
Wibral et al., 2014). In its simplest manifestation, it corresponds to the
MI between past and present activity, MI(R(t); R(t−τ)), where τ is an
adjustable latency, set to τ= 40 δt, unless otherwise specified.

Additionally, one may evaluate the fraction of information about the
orientation of the stimulus presented in a trial actively buffered by a
node. The resulting stimulus-specific active storage is given as follows:
MI(R(t); R(t-τ))−MI(R(t); R(t-τ)|Spos), that is, the totally stored informa-
tion minus the part of this stored information, which does not depend on
the stimulus orientation. This corresponds to the so-called
co-information, or negative interaction information, between three

variables R(t), R(t-τ), and Spos (McGill, 1954; Ince et al., 2017). Note
that co-interaction and interaction information may be negative when
there are synergistic interactions involved (see Discussion). However,
in our simulations, we always obtain positive values—indicating that
the correlation between rates R(t) and R(t-τ) is indeed mostly accounted
for by redundant information about Spos.

Finally, in all cases, storage measures are also normalized by
H(R(t-τ)) to make them relative.

The IPP of transferring information: transfer entropy. Information
transfer between neural populations can be estimated from the statistical
dependencies between neural signals (Brovelli et al., 2004; Bressler and
Seth, 2011) using model-free methods relying on the Wiener–Granger
principle (Wiener, 1956; Granger, 1969). It identifies information trans-
fer between time series when future values of a given signal can be pre-
dicted from the past values of another signal, above and beyond what can
be achieved from its autocorrelation. A general information-theoretical
measure to detect directed information transfer according to the
Wiener–Granger principle is transfer entropy (TE) (Schreiber, 2000); it
captures any (linear and nonlinear) time-lagged conditional dependence
between neural signals (Vicente et al., 2011). We remind once again that
the “transfer” captured by TE also conflates synergistic information
atoms and is thus not the strictest definition of transfer that may be pos-
sible (see Discussion). We however favor it here for its simplicity of
implementation. TE fromX toY is defined as the conditional MI between
the past of X and the present of Y, conditioned on the past of Y:

TEX�Y = MI(Y(t); X(t − t)|Y(t − t)).

Note that TE is asymmetric, that is, TEX→Y ≠ TEY→X, thus a suitable
measure for directed functional connectivity (Battaglia et al., 2012;
Palmigiano et al., 2017). We compute two types of TE. First, active
transfer from stimulus time course to response rate TES→R(t) =MI(R(t);
S(t-τ) | R(t-τ)) in the one-ring configuration. Second, active transfer
between the activities R1k of node k in ring 1 and R2k of another
homologous node (with identical angular coordinate) located in a second
ring TER1,k → R2,k(t) =MI(R2k(t); R1k(t-τ) | R2k(t-τ)) in the 3FF ring setup
(Fig. 4). For comparison (and assessment of numerical estimation artifacts),
we also compute the backward terms TER→S(t) and TER2→R1,k(t) that
should be zero by construction since there are no feedback couplings.
Again, TE is normalized by the entropy of the source variable. For the
3FF ring setup in SB state, we additionally calculate TERN,k → RN + 1,k(t)
and TERN + 1,k→RN,k(t), withN=1, 2 the ring number, usingmultiple delays
(dt= 5, 10, 15, … 40 δt) simultaneously without entropy normalization.
For this analysis, we use the GCMI approach implemented in the Frites
Python toolbox (see the Methods subsection on downloadable codes).
Finally, we remark that stimulus-specific analogs of Transfer Entropy
exists (Bím et al., 2020; Pica et al., 2019), as for active information sto-
rage, however we don't make use of them here.

The IPP of integrating information: synergistic modification. A third
type of primitive processing operation can arise when two input sources
X1 and X2 interact and communicate with a common target Y. Synergy
may emerge, where extra information is conveyed by the interaction
between the sources. This implies that the combined inputs X1 and X2

provide surplus information with respect to the inputs considered sepa-
rately (Brenner et al., 2000; Latham and Nirenberg, 2005). The process of
extracting this surplus information—performed by the output node Y—
has been called synergistic modification (Lizier et al., 2013, 2018).

Our two source variables are the firing rate of a node in one ring and a
stimulus position (X1 andX2), while the target variable is the firing rate of
a node in a second ring (Y ). We suggest that a primitive processing oper-
ation is the extraction of synergistic information by the target node. To
do so, we exploit a formalism that allows the decomposition of multivar-
iate MI between a system of predictors and a target variable. It quantifies
the information that several predictors provide uniquely, redundantly, or
synergistically about a target variable, the so-called PID (Williams and
Beer, 2010). The PID formalism can be outlined using the information
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Venn diagram (Fig. 5E). The total information that the output Y carries
about the pair of inputs (X1,X2) consists of unique, redundant, and syner-
gistic parts. The information Y shares with X1, but not with X2, is denoted
as MI(Y; X1∖X2), and, conversely, the other unique information term is
denoted as MI(Y; X2∖X1). The redundant part is the information shared
by both X1 and X2 is denoted as MI(Y; X1∩X2). The remaining part is
thus synergy whose amount can be determined by subtracting the non-
synergistic fractions from the total amount of information MI(Y; (X1,
X2)) that Y carries about the pair of inputs. However, these quantities
cannot be estimated directly. We operate under the so-called minimum
mutual information (MMI) ansatz, which has been shown to provide
correct estimations for Gaussian systems (Barrett, 2015, Luppi et al.,
2022). According to MMI, redundant information can be computed as
the minimum of the information provided by each individual source
to the target (i.e., an upper bound estimation: one input is supposed
not to carry any unique information).

Red = min{MI(X1; Y) MI(X2; Y)}.

Then, the synergistic information can be computed by subtracting the
MI of the single source variables from the total information. Each of
the individual MI(X1; Y ) and MI(X2; Y ) terms is the sum of unique con-
tributions from the considered variable and the redundant fraction.
Thus, when subtracting these terms from the total MI(X1, X2; Y ), we sub-
tract redundancy twice, so we have to “add back” one red term (in order
to subtract it only once, as we should). Therefore, with some simple alge-
bra (see the Venn diagram of Fig. 5E), we can write the following:

Syn = MI(X1 X2; Y)−MI(X1; Y)−MI(X2; Y) + Red.

The two equations represent the redundant and synergistic information
carried by the co-modulations in firing rate X1 and input-related variable
X2 about the target node Y, respectively. Once again, this metric is nor-
malized by an entropy term, here the one of the target output Y, to eval-
uate the synergistic fraction of the total output information flow.

Large-scale connectome-based model
Model implementation. To go beyond generic models of interacting

areas, we also re-implemented a large-scale model of cortical activity pre-
viously published by Joglekar et al. (2018). It consists of 29 cortical areas
(Table 3) whose local activity is modeled with simple neural mass equa-
tions, that is, population dynamics are represented as firing rates. Each
local circuit is composed of an excitatory (E) and an inhibitory (I) pop-
ulation with the corresponding EI, IE, EE, and II couplings (Fig. 6B, top
row). Every region is driven by a baseline current term (representing
ongoing background activity). In addition, transient sensory stimulation
can be implemented via additional local activity injection (see later).

All areas are reciprocally coupled to each other according to a con-
nectivity matrix derived from systematic tracer experiments in nonhu-
man primates (Markov et al., 2014; Fig. 6A, left). Such a directed and
weighted connectome defines the strength of the input each region
receives from all other cortical areas and is given by the fraction of
labeled neurons (FLN) by the tracer in a given source area, normalized
by the total number of labeled neurons over cortical regions. The inter-
areal lr connections are purely excitatory. Different from the original
model (Joglekar et al., 2018), we add transmission delays between areas
in the model, which have also been estimated empirically (Markov et al.,
2013). They rely on the (physical) distance between areas (Fig. 6A, right),
which is converted to propagation delays by assuming a propagation
speed of 3.5 m/s. Cortical areas are ordered according to their hierarchi-
cal level (Markov et al., 2013). Following Joglekar et al. (2018), the local
circuits in higher-order regions are endowed with stronger excitability
and correspondingly longer time constants.

The “bow-tie” architecture of the connectome (Markov et al., 2013,
2014) introduces a barrier to the free propagation of externally injected
stimuli. Mimicking a visual stimulus presentation, Figure 6B (bottom
row) shows the rate dynamics for a brief transient input injection to
area V1, which leads to a very limited propagation along the visual
stream. To enable a dynamical regime with enhanced signal propagation,

Joglekar et al. (2018) introduce a global balanced amplification (GBA)
mechanism in which lr excitatory connectivity is strengthened, while
simultaneously strengthening the local inhibition (IE connections)
within each region (Fig. 6B, top row). In the weak GBA regime (left),
the stimulus-related activity volley remains local while it reaches
higher-order regions due to the facilitated propagation in the strong
GBA regime (right). The increased amount of excitation is controlled
by a modified inhibitory-to-excitatory balance. In this manuscript, we
use these weak and strong GBA regimes as equivalent, respectively, to
the “attend-OFF” and “attend-ON” scenarios defined for the coupled
ring models.

All parameters for model simulations are listed in Table 4. Full details
about the reimplementation of the model by Joglekar et al. (2018) can be
found at the following link: github.com/ViniciusLima94/ReScience-
Joglekar.

Stimulus presentation and IPP analyses. To investigate the informa-
tion processing in the large-scale model, we apply a brief stimulus injec-
tion of 0.5 ms to the excitatory population in area V1, in the weak and
strong GBA regime. Note that for the large-scale model, in contrast to
the ring model simulations, there is no stimulus orientation. The stimu-
lation tag S (Spos for the ring models) merely represents the presence or
absence of the stimulus. Here, we analyze the IPPs of “buffering,” infor-
mation transfer, synergistic integration, and stimulus-specific storage
using the metrics described above. Note that all analyses are based on
the GCMI approach as implemented in the Frites Python toolbox
(Combrisson et al., 2022b). In the Frites implementation, latency-
dependent functionals such as AIS and TE are computed for all latencies
τ until a maximum latency and then averaged over this range of τ's (as we
did already in supporting analyses of the 3FF ring configuration).

AIS is computed as MI(Rn(t); Rn(t-τ)) with a maximum latency τ of
40 ms, where Rn represents the firing rates of the cortical areas n= 1…N.
In addition, the stimulus-specific AIS is calculated as MI(Rn(t); Rn(t-τ))
−MI(Rn(t); Rn(t-τ)|S), with S indicating stimulus presence or absence.
TE from V1 to all other areas is computed as TEV1→N=MI(Rn(t);
RV1(t-τ) | Rn(t-τ)) with RV1 representing the rate in V1 and n= 1…N
−1 indexing all other areas. Likewise, we calculate the backward transfer
TEN→V1 =MI(RV1(t); Rn(t-τ) | RV1(t-τ)) from all other areas to V1.
Finally, we compute the synergistic information encoded by V1
(RV1(t)), emerging from the integration of stimulus-related (bottom-up)
input S and the feedback (top-down) signals Rn(t) from other cortical
areas as Syn =MI(Rn(t),S; RV1(t))−MI(Rn(t); RV1(t))−MI(S; RV1(t)) +
Red. To investigate the relation between timing and distance, we calcu-
late the peak latency [time of the synergy peak—time of the rate Rn(t)
peaks] and correlate it to the distance of all areas to V1.

Using this model, we simulated 1,000 trials with stimulation and
1,000 without stimulation, each in the weak and strong GBA regimes,
respectively, amounting to a total of 4,000 trials. The total simulation
time is 7 s, and the initial 4 s is discarded. Stimulus onset occurs at t=
4.5 seconds with a duration of 500 ms. The strength of the stimulus
applied to V1 is 42 and 22 pA for weak and strong GBA, respectively.
The model is implemented using the NEST simulator toolbox for
Python (Eppler et al., 2008).

Available code resources
A python implementation of the ring models (three Jupyter Notebooks)
and the large-scale connectome-based model (run “main.py” to generate
the simulated data) are available in the GitHub repository: github.com/
brainets/IPP_PAPER/tree/main/src. The code for the analyses shown
in Figure 6 is also given in a Jupyter Notebook. More instructions can
be found in the README file. The connectivity data from Markov et
al. (2014) is originally available at the web-site “core-nets.org” and is
also given in the following: github.com/brainets/IPP_PAPER/blob/
main/src/interareal/markov2014.npy.

The functions used to perform the IPP analysis can be found in the
Frites package (Combrisson et al., 2022b). The synergy-based metrics
can be computed using the following code: github.com/brainets/frites/
blob/master/frites/conn/conn_pid.py.
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The metrics based on interaction information (e.g., AIS) can be com-
puted using the following: github.com/brainets/frites/blob/master/frites/
conn/conn_ii.py.

Exemplar code and documentation can be found on these web
pages: brainets.github.io/frites/auto_examples/conn/plot_pid.html and
brainets.github.io/frites/auto_examples/conn/plot_ii.html.

We also have a faster C code for ring model simulations, available on
request.

Results
Two dynamic regimes of response to stimulus
As presented in detail in the Models and Methods section, we
model a stimulus-selective cortical region as a ring network
with a “Mexican hat” connectivity profile (Fig. 2C), that is,
more excitatory interactions with units (also called nodes) at
nearby positions along the ring and more inhibitory with nodes
farther away. In our ring model, the activity of coupled network
units is characterized by their noisy firing rates. The correspond-
ing phase diagram, that is, its parameter-dependent dynamical
regimes, is shown in Figure 2D. We measure simulated responses
to stimulus presentations (emulating specific tasks) in two differ-
ent regimes: an SU and an SB dynamic working points (Fig. 2D,
bottom).

The simplest possible task entails (correctly) responding to
the presentation of stimuli with different orientations/angles
Spos in different trials. Each stimulus is spatially localized, yield-
ing a stimulus selectivity of different units, and can be transiently
presented at any chosen time. We show simulated recordings of
the activity of units in a single receiving region in Figure 3A. The
firing rates measured in six exemplary trials are shown in
Figure 3B, three operating in the SU regime (top) and three in
the SB regime (bottom). For each of the trials, we show spatial
maps of activity, where the horizontal axis represents time, the
vertical axis different units along the ring network, and the
firing rate is color-coded. The curves below the spatial maps
show the corresponding firing rates for all units over time. We
highlight in color the time series of units located at specific posi-
tions (indicated by matching-color lines on the corresponding
spatial maps). As anticipated, we observe a clear distinction
between responses in the SU and SB dynamic working points.
In the SU regime, a localized stimulus injection generates a
bump-like pattern of increased activity around the injection cen-
ter (red lines and curves), which disappears soon after the stimu-
lus is switched off. The firing rates of units outside a
neighborhood of the injection are either unaffected (blue trace
in SU trial #n and trial #j) or, at larger distances from the injec-
tion site, decrease due to the increased lateral inhibition exerted
by active units inside the bump (blue trace in trial #k). In con-
trast, in the SB regime, bumps of increased activity develop spon-
taneously, at random positions along the ring, even without any
stimulation. Upon stimulation, the bump's position shifts toward
the injection site, its amplitude increases, and it remains stable
until the end of the stimulus. After stimulus removal, the
bump amplitude relaxes back to its initial value, but the position
remains stable around the injection site.

These two configurations correspond to distinct functional
behaviors: in SU, stimuli are only transiently represented. In con-
trast, in SB, a sustained activation is observed, supporting the
maintenance of the working memory of the presented stimulus
after its removal. The two IPPs associated with these two simple
functional behaviors are “carrying” and “buffering” information,
respectively (compare Fig. 1B, top two cartoons). They can be
tracked by different information-theoretical metrics. We focus
first on the “carrying” IPP and address the “buffering” IPP in
the next section.

IPP analysis can track the representation of a stimulus
In Figure 3C (top), we show the amount of total information that
a ring unit carries as a function of time, averaged across all units
and trials, provided by the entropy H(R(t)) of the activity rates
R(t) as they change in response to stimulus presentation. The
average entropy of activity differs between the SU and SB
regimes. In SU, entropy is rather low in the absence of
stimulus, due to the temporal and spatial homogeneity of base-
line firing rates, fluctuating only due to a weak background
noise. Entropy increases during stimulus presentation, as
stimulus-evoked bumps emerge and produce differences in
response rates for different stimulus positions, increasing inter-
trial variance. In contrast, in SB, entropy is higher before stimu-
lation, because of the stochasticity of the spontaneously emergent
bump positions. In our simulated experiments, stimuli are pre-
sented at four discrete possible positions (a configuration often
met in empirical experiments). Therefore, upon stimulation,
the bump positions are quenched to only four pronounced max-
ima (compare spatial maps in Extended Data Fig. 3-1A), result-
ing in a strong entropy reduction with respect to baseline.

Figure 2. Dynamical states of the ring model of one cortical region. A, Ring model to emu-
late information encoding and storage: circles represent feature-specific neuronal nodes,
parametrized by an angle coordinate θ along the ring, indicating the preferred stimulus direc-
tion (denoted by differently oriented lines within the circles); connecting edges indicate inter-
nal all-to-all structural couplings, whose weights depend on the distance between the
coupled network nodes (compare C). The rectangle below the ring indicates that stimulus-
related inputs are injected in a localized fashion to network nodes with a specific stimulus
direction preference (indicated by a red arrow), following B, a narrowly tuned Gaussian spatial
profile. C, Example profile of spatial modulation for internal ring couplings, here with a
“Mexican hat” shape for parameters J0 = 0 and J1 = 1 (see Methods). D, Top: phase diagram
reporting different dynamical regimes obtained for different coupling parameter values.
Bottom: spatial maps (nodes vs time) for the two dynamical regimes explored in this study:
SU activity with transient, stimulus-induced bumps of activity and SB activity with an ongo-
ing, self-sustained bump, persisting after stimulus offset.

8 • J. Neurosci., January 10, 2024 • 44(2):e0157232023 Voges, Lima et al. • Information Processing Primitives

github.com/brainets/frites/blob/master/frites/conn/conn_ii.py
github.com/brainets/frites/blob/master/frites/conn/conn_ii.py
brainets.github.io/frites/auto_examples/conn/plot_pid.html
brainets.github.io/frites/auto_examples/conn/plot_ii.html.
https://doi.org/10.1523/JNEUROSCI.0157-23.2023.f3-1a


Entropy rises again after stimulus removal, as firing rates are
reduced and noisy fluctuations more evident. For both the SU
and SB regimes, we furthermore observe tiny peaks and kinks
of the entropy time courses in correspondence with stimulus
onset and offset at times tON and tOFF. These variations can be
explained by the non-instantaneous response of the system to
instantaneous inputs, causing fast transient dynamics (like
impulse responses) to occur shortly after stimulus onset and
offset (so that inter-trial variance is temporarily increased during
these transients).

This simple analysis illustrates how strongly the values of
information-theoretical quantities depend on aspects of the neu-
ral recordings, such as signal-to-noise ratio and actual task
design, which have little to do with algorithmic-level operations.
Entropy is an upper bound to other metrics, for example, MI that
quantifies the statistical dependence between two or more vari-
ables. Entropy variations could result in absolute MI variations,
which simply reflect changes in the available informational band-
width. For the study of primitive processing operations, we thus

focus on relative metrics that are normalized by entropy. We
therefore do not have to account for the additional complexity
of total entropy fluctuations unrelated to the processing probed.

We show the relative amount of information that a unit's
activity carries about the stimulus, disentangling two of its
aspects: the stimulus time course S(t), that is, its presence/
absence at specific times t and the orientation Spos of the stimulus,
which is a trial-specific property (changed every trial, see Models
and Methods). This fraction of information is captured by the
entropy-normalized MI between firing rate R(t) and stimulus
time course S(t) (MI(R(t); S(t)) in Figure 3C, middle, or stimulus
orientation label Spos (MI(R(t); Spos) in Figure 3C, bottom (see
Extended Data Fig. 3-1B,C for the corresponding spatially
resolved maps). Before stimulus presentation, no information
about the stimulus can be extracted from the neural activity, since
the baseline noise entropy is unrelated to the stimulus. In con-
trast, during stimulus presentation, activity is modulated in
dependence on stimulus position (i.e., the distance between
Spos and the angle of the recorded unit).

Figure 3. Information encoding and storage in a single-region circuit. A, To track the simplest possible IPP of information “carrying,” we simulate different trials in which stimuli with different
directions θ are presented for a short, fixed time of 150 ms (as indicated by the stimulus-related input time course S(t)). The direction Spos of the presented stimulus is denoted by a red arrow as
in Figure 2A. B, Spatial maps (top row, units vs time) and single-trial firing rate traces (bottom row) of neuronal activity in a one-ring network, in the SU and SB dynamical regimes. Red lines
indicate traces for nodes located at the stimulus center, blue lines nodes far from it, and magenta lines indicate the initial bump position for the SB regime (SB trial #n: red covers magenta line).
C, Time courses of entropy (top row) and stimulus-related MI averaged over nodes and trials (normalized by entropy), for SU (black) and SB (green lines) regimes. Middle and bottom rows:
stimulus presence and orientation (stimulus-specific) are transiently encoded by activity in both SU and SB regimes, as revealed by the MI between rates and, respectively, S(t) and Spos.
D, Moving to the IPP of “buffering,” we quantify and show time courses of AIS (intrinsic and stimulus-specific) in both the SU and SB regimes averaged over nodes and trials. Stimulus-specific
storage persists after stimulus offset in SB, denoting working memory implementation. E, Time courses of information transfer from injected stimulus to rates, quantified by TE. Light and dark
cyan lines indicate (negligible) backward transfer from rate to stimulus. See also Extended Data Figure 3-1.
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The information about the stimulus-related time course S(t)
becomes positive during stimulus presentation, in both the SU
and SB regimes, saturating to a higher value in SU (Fig. 3C, mid-
dle), as the evoked bump activity configuration differs strongly
from the homogeneous baseline. During stimulus presentation,
some units develop much lower or higher firing rates than in
spontaneous conditions, thus signatures of stimulus presence.
No S(t)-related information exists before or after stimulus pre-
sentation. Similarly, MI with stimulus position Spos (Fig. 3C, bot-
tom) is absent before stimulus presentations and saturates to a
plateau shortly after stimulus onset. It is higher for the SB than
the SU regime, as SB provides a larger dynamic range of
responses and sharpened bumps. Stimulus encoding is slightly
delayed in SB, since the rearrangement of the bump positions
is not as fast as the sudden, stimulus-evoked bump in SU. In
the SU regime, all stimulus-related information vanishes shortly
after stimulus offset. In contrast to SU, information about stimu-
lus position remains present after stimulus offset in the SB
regime, as the stimulus-evoked bump self-sustains itself in its
(new) position. It may slowly drift away under the influence of
background noise over timescales longer than the observation
window considered here.

Extended Data Figure 3-1B,C show that spatial maps of MI
not only depend on time but also on spatial location. Stripes
are clearly visible in these “infogram surfaces,” because our
design comprises only a discrete number of possible stimulus
orientations (compare Extended Data Fig. 3-1A). Encoding of
stimulus features is in general stronger in the bump centers as
these locations have a larger dynamic range.

In summary, the normalized MI of firing rate with stimulus
provides an interpretable marker of the IPP of “carrying” stimu-
lus (un-)specific information.

IPP analysis can track the loading and maintenance of a
representation in working memory
We are able to detect that the poststimulus activity in the SB
regime still “carries” stimulus position information. Through
which primitive processing operations can this representation
be held in working memory? Answering this question requires
turning to information dynamics metrics, such as AIS (see
Methods), which quantifies the fraction of the information car-
ried by a node's activity at a time t that was already carried at
an earlier time t-τ, that is, MI(R(t); R(t-τ)), with delay τ= 40 δt.
Plain AIS tracks the time-lagged maintenance of information
by neural activity, irrespective of the origin of this information
(stimulus-related or intrinsically given). The process through
which this fraction of information is maintained corresponds
to the IPP of “buffering” (compare the second cartoon from
the top in Figs. 1B, 3D, left). Note that we focus on buffering
by one node only (as we did with “carrying”). Strictly speaking,
however, information about stimulus may be carried (redun-
dantly and/or cooperatively) by more than one node simulta-
neously. Accounting for these more complex scenarios would
require using more advanced metrics of storage that discriminate
storage of redundant versus synergistic information (see
Discussion), which we do not consider here, for the sake of
simplicity.

Figure 3D shows averaged time traces of AIS computed with
the ring model in Figure 3A–C. In the SU regime, AIS is positive
only during stimulus presentation. It relaxes back to zero after
stimulus offset as the stimulus-evoked bumps dissolve back to
homogeneous baseline activation. In the baseline pre- and post-
stimulus presence, all entropy is due to spatially and temporally

uncorrelated noise, which is by construction memory-less, thus
resulting in null active storage.

The situation is different in the SB regime, in which (sponta-
neous) bump formation is associated with active storage and thus
positive at baseline and after stimulus offset. However, AIS drops
at stimulus onset and offset. These events induce changes in
activity that cannot be predicted based on prior intrinsic activity
and hence convey information, which is not the outcome of
“buffering” but must come from outside the system. This infor-
mation injection is captured by another information-theoretical
metric, TES→R(t) from stimulus to rate (see Methods), tracking
the complementary IPP of “transferring.” In general, TE iden-
tifies the information flow between time series when a given sig-
nal Y is influenced by another signal X. It is defined as the
conditional MI between the present of Y and the past of X, con-
ditioned on (i.e., factoring out) the past of Y. As shown in
Figure 3E, the TE peaks match the drops in AIS visible in the
middle of Figure 3D. At stimulus onset, network nodes modify
their algorithmic role, reducing their implication in the IPP of
“buffering” and becoming the recipients of information conveyed
by the IPP of “transferring.” Transfer of information from stimu-
lus to activity occurs also at stimulus offset, when a new informa-
tion injection indicated by a second peak in TE encodes a release ,
nd to either produce bump dispersion (in SU) or a decrease in
firing rate together with readjustments of the bump shapes (in
SB). See also Extended Data Figure 3-1D for detailed spatial
maps showing the nodes that are most strongly affected by exter-
nally injected information at different times.

The information buffered at baseline in the SB regime cannot
yet be stimulus-specific as the stimulus has not yet been pre-
sented (the positions of spontaneously generated bumps in SB
are random). To formalize this intuition, we quantify the fraction
of information about the stimulus stored by the network nodes,
that is, the stimulus-specific active storage. It is the totally stored
information minus the part that does not depend on the pre-
sented stimulus orientation (see Methods). The averaged time
course of stimulus-specific active storage is shown in the right-
most subpanel of Figure 3D. Its trace correctly captures that there
is no stimulus-specific information buffering prior to stimulus
presentation, while it displays a transient increase after stimulus
presentation, for SB also during the poststimulus period.
Stimulus-specific active storage thus provides a valid metric to
track the active maintenance of information relative to a pre-
sented stimulus.

In this single-ring example, the dynamics of “carrying” and
“buffering” stimulus-related information are very similar,
because all information “carried” by a node exists as a form of
“buffering” well after stimulus onset and offset. However, they
are not completely identical. In SB, the rebound after stimulus
offset in the curve for buffering is the most obvious difference
to the carrying curve. It reflects the fact that some of the transient
variations in “carrying” are due to “transfer” (compare Fig. 3E).
In general, compared to the IPP of carrying, buffering is always
delayed, since only information already carried by the system
can be buffered.

At the functional level, such stimulus-specific maintenance
marks the implementation of working memory. At the algorith-
mic level, our IPP analyses allow a decomposition of working
memory: it arises via the loading of stimulus-specific informa-
tion—through the IPP of “transferring”—into the system's units.
By virtue of their collective dynamics, these units are intrinsically
devoted to the IPP of “buffering.” This algorithmic decomposi-
tion provides not only a narrative of how a system's dynamics
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translates into a function but also yields a quantitative character-
ization: suitable information-theoretical metrics—AIS for
“buffering” and TE for “transferring”—provide a precise evalua-
tion of when, where, and how distinct IPPs are performed.

IPP analysis can track the propagation of representations
through a multiregional hierarchy
We now tackle the algorithmic decomposition of the function of
activity propagation. As detailed in Models and Methods, we
simulated a feed-forward chain of three-ring modules, represent-
ing three hierarchically ordered regions (e.g., V1, V2, and above;
Fig. 4A, bottom). The bottom ring R1 represents a sensory corti-
cal area. It receives an input stimulus, which is sent to hierarchi-
cally higher cortical areas (R2 and R3). Each unit in the bottom
and middle rings (R1 and R2) is coupled to the corresponding
unit (and its local neighbors) in the subsequent rings (R2 and
R3), respectively.

Figure 4B shows a representative example of single-trial firing
rate traces (together with the associated spatial maps of activity)
for all three rings, for both the SU (top) and SB regimes (bottom).
Red lines and curves indicate units at the position of stimulus
injection, blue units far from it, and magenta lines and curves
indicate the initial bump position in SB simulations. All panels
show the propagation of activity bumps through the hierarchy
of rings. Again, bumps are purely stimulus-evoked in the SU
regime, while they emerge spontaneously (and are persistent)
in the SB regime. The bump’s maximum amplitude decreases,
and its peak latency is delayed when propagating from the bot-
tom to the top ring. This effect is more pronounced in the SU
regime than in the SB regime, where self-amplification via local
recurrent excitation acts as a facilitator for propagation. In SB,

the effect of forward coupling is already observable without any
stimulation: the intrinsic bump positions (magenta lines and
curves before stimulus onset) are very similar in the three rings,
whereas they would be completely decorrelated if rings were
uncoupled.

As for the one-ring model, we study whether bump activity
performs the basic IPP of “carrying” information about the sti-
mulus. The encoding dynamics revealed by the MI analyses in
Figure 4C closely mirror the dynamics of firing rates in
Figure 4B. The peak amount of information carried about stimu-
lus position is larger in the bottom ring (black curve) and weaker
in the top ring (dotted curve). Furthermore, the rise of encoded
information is slower and delayed in rings R2 and R3, particu-
larly in the SB regime where the realignment of bump positions
is slow and continues in higher-order rings even after stimulus
offset. Our model thus successfully captures the propagation of
sensory representations.

The obvious IPP algorithmically mediating this propagation
is that of “transferring” (compare Fig. 3E). In Figure 4D, we
show the time series of interregional information transfer evalu-
ated via TE (again, see Discussion for some limitations of this
metric). TE quickly rises after stimulus presentation, reaching a
peak when MI with the stimulus saturates at its maximum pla-
teau value (compare Fig. 4C). Transfer is stronger and faster
from R1 to R2 than from R2 to R3, again in agreement with
the firing rate dynamics in Figure 4B. After the peak, transfer
drops to a plateau level, which slowly decays after stimulus
offset. The profile of transfer is more complex for the SB than
for the SU regime. Firstly, in SB, there is inter-ring transfer of
information prior to stimulus onset, since the bump positions
in R1 and R2 influence those in R2 and R3, respectively (compare

Figure 4. Information transfer in multiregional feed-forward circuits. A, We study the IPP of “transferring” as it gives rise to stimulus propagation across a chain of three feed-forwarded
connected regions, each modeled by a different ring network. Only the bottom ring (R1) directly receives stimulus-related inputs (red arrow). B, Spatial maps (left) of single-trial firing rates and
corresponding rate time series (right) in R1, R2, and R3 (top, SU regime; bottom, SB regime). Red lines indicate nodes located at the stimulus center, blue lines nodes far from it, and magenta
lines indicate the initial bump position for SB, as in Figure 3B. C, Time courses of relative MI between rates and stimulus feature (trial and node averages, entropy normalized) reveal stimulus
position encoding, transient in SU (top) and persistent in SB (bottom), progressively weaker and more delayed ascending from R1 (black line) to R2 (gray line) and R3 (dotted line). D, Time
courses of information transfer, quantified by TE (trial and node averages, entropy normalized) from R1 to R2 (black), R2 to R3 (gray), R2 to R1 (dark cyan), and R3 to R2 (cyan; SU on the top, SB
on the bottom). See also Extended Data Figure 4-1, notably for an analysis of the dependency of TE on lag and a comparison with time-lagged MI.
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Fig. 4B). Secondly, SB curves are broader with marked secondary
peaks, associated with the rearrangement of bump positions.
Their rearrangement takes longer than their mere creation.
The spatial maps of TE in Extended Data Figure 4-1A show
that substantial transfer occurs even to units far from the stimu-
lus centers as the generation or drift of bumps at locations mis-
aligned with the stimulus must be actively controlled (another
interregional functional interaction that TE is able to track).

Since the wiring of the multiregional circuit is purely feed-
forward, there should not be any significant feedback information
transfer. In the SU regime, the backward TE from higher-order
toward lower-order rings is close to zero. However, in the SB
regime, a finite backward TE is detected. It is clearly smaller
than the forward TE, allowing it to correctly capture the domi-
nant direction of transfer. This spurious backward transfer is
due to the misestimation of joint probability density given the
finite amount of data, as well as to systematic biases of our simple
“plug-in” estimators. Since the wiring of the multiregional circuit
is purely feed-forward, there should not be any significant feed-
back information transfer. In the SU regime, the backward TE
from higher-order toward lower-order rings is close to zero.
However, in the SB regime, a finite backward TE is detected. It
is clearly smaller than the forward TE, allowing it to correctly
capture the dominant direction of transfer. This spurious back-
ward transfer is due to the misestimation of joint probability den-
sity given the finite amount of data, as well as to systematic biases
of our simple “plug-in” estimators. It can be reduced by using a
longer delay in estimating TE (Extended Data Fig. 4-1B), and it
vanishes almost completely when using multivariate delay coor-
dinate embeddings as originally prescribed for TE (Schreiber,
2000; see Extended Data Fig. 4-1C). Both approaches allow lim-
iting the impact of fast transients not properly captured by our
quantized estimation of joint activity distributions (see
Methods). The spurious backward transfer occurs primarily in
the particular case of three coupled rings in the SB state: here,
the changes in the internal dynamics (bump displacement) are
very slow compared to the fast change in the external input (sti-
mulus onset), because the reformation of bumps inside each ring
takes a certain amount of time and is even more delayed in rings
2 and 3. In this case, a multi-delay estimator of TE can be used to
substantially reduce the bias. In all presented cases, the conclu-
sions reached by more sophisticated (and computationally
costly) estimators are qualitatively equivalent to the ones of sim-
pler single-delay TE. Single-delay TE, furthermore, despite its
simplicity, already allows a clearer detection of the dominant
direction of information propagation than plain time-lagged
MI (Extended Data Fig. 4-1D), in line with previously published
theoretical analyses (Kirst et al., 2016).

In summary, all estimators were able to correctly detect the
existence of dominantly feed-forward information transfer. The
“transfer” IPP is always the main component in the algorithmic
decomposition of the propagation of a sensory representation.

IPP analysis can track the integration of bottom-up and
top-down information flows
Our last model configuration is specifically designed to repro-
duce another important cognitive function: selective attention
and the involvement of working memory in its implementation.
An attentional effect is depicted as boosting responses to stimuli
with attended features and suppressing responses to stimuli with
features far from the attended ones (feature–gain–similarity
principle, Maunsell and Treue, 2006). Seminal modeling work
by Ardid et al. (2007) has first shown that the attentional effects

on sensory responses can be explained as a byproduct of the non-
linear integration of sensory bottom-up inputs and top-down
inputs from a higher-order region with working memory. This
is in line with earlier hypotheses that working memory could
be a fundamental component of mechanisms mediating atten-
tional modulation (Desimone and Duncan, 1995). In the follow-
ing, we will show that this merging of bottom-up and top-down
influences can be tracked by the IPP of “integrating,” quantified
by synergistic information modification (Fig. 5A). In the model
proposed by Ardid and co-workers, two ring networks are
reciprocally coupled (2RC architecture; seeMethods). The lower-
order ring R1 represents a sensory area tuned in SU, thus gener-
ating stimulus-driven bumps upon stimulus injection. The
higher-order ring R2 represents the prefrontal cortex, condition-
ally set to be in the SU or SB regime, respectively, depending on
the attention state “off” (att-OFF) or “on” (att-ON). With
att-ON, the second ring is enabled to sustain an induced repre-
sentation of a presented stimulus, even after the stimulus is
removed (i.e., it can act as working memory).

Following Ardid et al. (2007) in the main aspects, we simulate
a classic delayed match-to-sample task (Fig. 5B). This virtual task
mimics actual experiments probing the response of cells recorded
in the MT cortex to drifting dot patterns. Cells in MT show a
strongly selective response to stimuli drifting in their preferred
angular direction (Albright, 1984), resulting typically in bell-
shaped tuning curves with a marked unique peak. In our compu-
tational model, this selectivity is captured by the heterogeneous
responses of units along the sensory ring, resulting in the
response profile given by the black curve in the top panel of
Figure 5C. In the virtual task design of Figure 5B, two types of tri-
als exist. The “att-OFF” trials correspond to an empirical condi-
tion in which the subject actively attends to a stimulus presented
outside the receptive field of the recorded cells [called “unattend”
in Treue (2001)]. The “att-ON” trials conversely correspond to
the empirical “attended” condition where the attentional spot-
light is in the receptive field of the recorded cells. In both condi-
tions, a first cue stimulus is shown and then removed (Fig. 5B, red
stage), followed by a delay period of a certain length (Fig. 5B,
black stage) with no stimulus. Then, a second stimulus is pre-
sented, whose direction can be close to or far from the direction
of the initially cued stimulus (Fig. 5B, match stage, magenta).
Individual simulated trials for different cue and match stimulus
configurations are shown in Figure 5D, in both the att-ON
(top) and att-OFF (bottom) conditions.

When simulating neural responses in the att-OFF condition
(prefrontal area ring R2 tuned to SU), the response profile of
the sensory ring to the match stimulus is unchanged with respect
to the one during the cue stage. The presentation of match stimuli
with different directions simply produces rotated response
profiles (Fig. 5C, black and dashed gray lines). Inspecting the
responses in individual trials, we see that all match stage activity
bumps in the sensory ring look similar and that the activity in the
prefrontal ring R2 has a smaller rate and a worse signal-to-noise
ratio compared to R1 (Fig. 5D, bottom).

In contrast, in the att-ON condition (a copy of the cue has
been held through the delay period by R2 switched to SB), the
response profile at match stimulus is differently modulated
depending on the relative difference of orientation between cue
and match stimuli (Fig. 5C, ΔΘ). If cue and match stimuli have
identical orientations (ΔΘ= 0), the response of the direction-
selective units in R1 is boosted, while the response of units selec-
tive to stimuli far from the attended one is reduced. This can be
seen in single-trial responses (Fig. 5D, top), where the match
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Figure 5. Information integration and synergy in the presence of top-down attentional modulation. A, We study the IPP of “integrating” as it mediates the emergence of top-down attention-
like modulation of stimulus response in a bi-regional circuit, composed of two reciprocally coupled ring networks, representing respectively a low hierarchical order sensory region and a higher-
order frontal region. B, In the virtual task we simulate, after a baseline period, two stimulus presentations, during a cue and match stage, respectively, with positions Spos and Spos2 (red arrow),
separated by a delay period without stimulation. Such a configuration mimics a selective attention experiment in which a copy of the presented stimulus is uploaded to a frontal working memory
module (upward blue arrow), which stores it actively through the extent of the delay period (light blue arrow). At the moment of the match, this working memory copy interacts (downward blue
arrow) with the sensory representation evoked by the newly presented stimulus, matching or not the previously cued direction. The circuit can be set into an “attention-ON” (upper ring in SB
regime) or an “attention-OFF” (upper ring in SU mode) condition. Panel B shows trial-averaged spatial maps in the att-ON condition for matching stimuli directions (Spos = Spos2). C, Response
curves of firing rates averaged over trials and time during Spos2 presentation (match stage). The red curve for match trials (Spos = Spos2), purple curves for no-match, and both for att-ON. In
att-OFF, the black curve corresponds to a match, otherwise dotted gray curves. Bottom: attentional modulation index showing the percent enhancement (or depression) of firing rate during
match stage in att-ON versus att-OFF conditions. D, Firing rate spatial maps for three single trials with different configurations of Spos and Spos2), in bottom (R1) and top ring (R2; top, att-ON;
bottom, att-OFF conditions). E, Venn diagram indicating the PID of the total MI between the sensory response in R1 and the pair of bottom-up sensory and top-down frontal inputs: synergy
equates the fraction of this total which is neither uniquely carried by R2 and Spos2, nor redundant between them. For details on individual terms of the PID, see Extended Data Figure 5-1. This
synergistic information is extracted by nodes in R1 through the process of information modification. F, Spatial map of the synergistic modification (normalized) in ring R1 in attention-ON (left)
and OFF (right) conditions. Synergy is much stronger in att-ON condition, particularly in the match stage. G, Section of the synergy surface during the early match stage (section averaged over the
time window indicated in F, by the dotted black rectangle).
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bump is slightly darker for identical cue and match configuration
(trial #n). It is clearer in the red activation profile in Figure 5C
whose peak at ΔΘ= 0 is higher than the black one obtained for
att-OFF. If cue and match stimuli have different directions, the
difference in Δθ modulates the corresponding response profile
(Fig. 5C, purple curves) in the att-ON condition. The net amount
of (simulated) attention-induced modulation can be quantified
by computing the percent difference ratio between the response
profiles to a stimulus in att-OFF and ON conditions as shown
in the bottom panel of Figure 5C. In our virtual task, the positive
modulation can be as large as +15% for responses to identical cue
and match stimuli and down to between −10% and even −45%
for stimuli, which are∼45° displaced.We now study the algorith-
mic effects of these nonlinear dynamics.

We focus specifically on the IPP of “integrating,” occurring
here at the match stage when the sensory response (Fig. 5D,
R1) is the byproduct of nonlinearly merged bottom-up stimulus-
related input (Spos2) and top-down attention-related input (R2).
The information-theoretical quantity, we use to track this IPP
is synergistic information modification (Lizier et al., 2013). As
graphically depicted in the information Venn diagram of
Figure 5E, the two bottom-up Spos2 and top-down R2 inputs carry
together (when considered jointly) a certain amount of informa-
tion MItot =MI((R2, Spos2); R1) about what is going to be the out-
put sensory response R1. A fraction of this total information is
contributed uniquely by each of the two considered inputs. At
match stimulus onset, only the bottom-up input Spos2 can convey
information about the direction of the newly shown match sti-
mulus, while only the top-down input R2 can carry information
about the previously presented cue stimulus. Both inputs con-
tribute to determining the final output response, and they com-
prise two unique information fractions conveyed exclusively by
each of the two inputs (Fig. 5E, green and blue areas). Some addi-
tional information may be shared between the two inputs—
including noise entropy—as captured by the redundant informa-
tion fraction (Fig. 5E, cyan intersection). Yet, the sum of unique
and redundant contributions could be smaller than the total
information MItot. Some information necessary to determine
the response could be conveyed by the two inputs in combination
but by neither of them in isolation. This surplus contribution
—“more than the sum of the parts” (Anderson, 1972)—is the
synergistic fraction of the total information (Fig. 5E, white
area), and its extraction by the output nodes is termed the syner-
gistic modification operation. We estimate these unique, redun-
dant, and synergistic contributions, quantifying when and where
along the virtual task (Fig. 5B) the activity of the interacting rings
implements the IPP of “integrating.”

This extraction of the synergistic information is tracked and
quantified by the information modification surfaces shown in
Figure 5F, for both att-ON (left) and att-OFF (right) conditions
(compare Extended Data Fig. 5-1 for details on the individual
terms contributing to its computation). In addition, Figure 5G
shows the profile of a section of the modification surface at the
beginning of the match stage (Fig. 5F, averaging range delimited
by the dotted black rectangle). Clearly, sensory ring units per-
form information modification at specific task-related locations
and times in the att-ON condition while there is nearly no syner-
gistic modification for att-OFF.

The most prominent involvement in information modifica-
tion occurs in the match stage, particularly at the immediate
onset of the match. This is precisely when attentional modula-
tions of stimulus response occur. As visible when comparing
the profiles of attentional modulation (Fig. 5C, bottom) and

information modification (Fig. 5G), the participation of a node
in information modification is stronger for the prominent
bump in attentional modulations. Specifically, modification is
enhanced at the bump flanks, where the most attentional depres-
sion is observed. Modification at the bump center position is
weaker, because here, the strong net drive helps the recurrent
excitatory connectivity within the sensory ring to sustain the
boosted activity.

For att-ON, information modification can be seen to occur
during different virtual task stages. Modification stripes preced-
ing the match stage occur during the delay stage with a much
weaker intensity. They are related to the fact that some
small-intensity activity is top-down transferred from the bump
in R2 (compare Fig. 5F). These nonlinear interactions between
the working memory bump during the delay and its “sensory
shadow” effectively reduce the variability of the sensory ring
activity in att-ON versus att-OFF. This is another type of nonlin-
ear phenomenon beyond rate modulations that can result in
modification (see Discussion). Other modification events occur
during the cue stage, probably due to the transient reshaping
dynamics of activity bumps caused by the parameter changes
for R2 to switch from SU to SB regime.

In the att-OFF state, information modification is close to zero
and possibly estimated to small positive values, because of
numeric estimation artifacts. As detailed by Extended Data
Figure 5-1, the surfaces shown in Figure 5C are the sum of several
other surfaces corresponding to the different terms in the expres-
sion for the synergistic information part (see Methods).
Numerical errors could thus be more important, as more steps
are involved.

In conclusion, the function of selective attention admits an
algorithmic decomposition involving the IPP of “integrating,” a
much more complex function than the IPPs of “carrying,”
“buffering,” or “transferring” described in previous sections.

Information dynamics in a large-scale model of
the cerebral cortex
The ring models we have studied so far represent generic coupled
brain regions with only stylized notions of hierarchical connec-
tivity (Fig. 4, feed-forward propagation; Fig. 5, top-down integra-
tion). Detailed information about interregional cortical
connectivity is, however, available and large-scale models of cor-
tical activity have been constructed, embedding empirically
derived multiregional connectomes (Deco et al., 2011). In these
models, the local activity of individual regions is modeled with
simple neural mass equations. Each region receives inputs from
other regions, scaled by the relative strength of connections
within a connectome matrix. In addition, the distinct fiber tract
lengths of the connections can be represented by different prop-
agation delays. To validate our IPP approach beyond generic and
ad hoc constrained ring model architectures, we now consider
the case of stimulus-evoked activity in a large-scale model of
macaque monkey cortex with realistic connectivity (Fig. 6).

Specifically, we re-implemented a model previously published
by Joglekar et al. (2018), embedding a directed and weighted con-
nectome derived from systematic tracer experiments (Markov et
al., 2014; Fig. 6A). The “bow-tie” architecture of such a connec-
tome introduces a barrier to the free propagation of externally
injected stimuli. As shown in Figure 6B, the application of a brief
transient input to region V1, mimicking the presentation of an
external visual stimulus, leads to a very limited propagation of
activity along the visual stream. However, a GBA mechanism
can be introduced, in which lr excitatory connectivity is
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Figure 6. Information dynamics in a large-scale model of the cerebral cortex. Large-scale connectome-based mean-field model of nonhuman primate cerebral cortex. A, Interregional con-
nectivity is described by empirically derived matrices of connection strength (left) and connection length (right), determining efficacy and delay of inputs from remote regions. B, We consider two
regimes of the model, a weak and a strong GBA mode. To favor signal propagation, in strong GBA, long-range excitation is strengthened together with an increase of local inhibition to excitation,
to avoid rate explosion. Shown at the bottom are rasters of the rate response of different regions of interest in response to a stimulus pulse presented to region V1, in the weak and strong GBA
modes. C, Rasters of IPP metrics dynamics associated with the presentation of a stimulus in the strong GBA regime (as in panel B, right). D, Alternative representation of IPP metrics in the form of
radar plots (blue, strong GBA; red, weak GBA). From left to right: AIS (stimulus-unspecific, see panel E for an example of stimulus-specific, in orange, vs stimulus-unspecific, in blue, storage); TE
from and to region V1; synergistic integration by region V1 of stimulus-related and top-down inputs from different regions. F, From bottom to top: time series of rate responses of a sensory and a
frontal region, together with the synergistic integration by V1 of the bottom-up stimulus and top-down frontal inputs. Peak positions are highlighted by dashed lines. G, Scatter plot of synergistic
modification peak latency versus distance of top-down input source from V1 reveals an anticorrelation (significant Pearson's R, 95% confidence intervals −0.658 and −0.643).
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enhanced, while simultaneously strengthening local inhibition
(to excitatory populations within each region; Fig. 6B, top right).
In this way, propagation is facilitated by stronger connections,
while the increased amount of excitation is controlled by a mod-
ified inhibitory-to-excitatory balance. Figure 6B compares a sce-
nario of weak (left) versus strong GBA (right), revealing that
stimulus-related activity volleys can reach higher-order regions
only in the latter case. Following Joglekar et al. (2018), higher-
order regions are endowed with stronger excitability and corre-
spondingly longer time constants. Thus, once a stimulus-related
volley has reached a higher-order region (e.g., region 46d), the
stimulus-evoked activity will last well beyond the offset of the
applied stimulus. Adoption of a strong GBA regime and
hierarchy-scaled excitabilities allows thus to implement in the
large-scale model a scenario reminiscent of the att-ON condition
in Figure 5, where the top ring, after being cued to attend a stimu-
lus direction, is switched in the SB regime, sustaining bumps in
absence of a stimulus.

We performed simulations of stimulus propagation in this
large-scale cortical model and extracted its algorithmic decom-
position, revealing “buffering,” “transferring,” and “integrating”
IPPs. Figure 6C shows raster plots of IPP metrics, computed in
the strong GBA regime, whereas Figure 6D shows an alternative
representation of these IPPs, time-averaged radar charts, where
blue lines indicate strong and red lines weak GBA regimes. The
results of analyzing (stimulus-unspecific) AIS are reported in
the first column on the left. We observe that sensory regions
(e.g., V1 and V4) and (pre-) frontal regions (e.g., 46d, 8) have
very different storage dynamics. The raster plot (Fig. 6C) shows
that in sensory regions, AIS drops relatively quickly after stimu-
lus offset, while in higher-order regions, it persists for a longer
time span, an effect of the longer intrinsic time constants.
Areas 46d and 8 display positive AIS before stimulus presenta-
tion, reminiscent of ring networks in the SB regime (compare
Fig. 3B). However, when additionally computing stimulus-
specific storage (Fig. 4E, area 46d), we see that the fraction of sto-
rage imputable to stimulus is zero before stimulus onset and
increases thereafter. In the low GBA condition, only a limited
set of regions displays noticeable AIS (Fig. 4D).

The IPP of transfer is shown in the second and third columns
of Figure 6, C and D. Here, we consider the forward TE from V1
to other areas and the backward transfer to V1. In the strong
GBA regime, V1 transfers information to a variety of other
regions, mostly in the ventral (e.g., V4) or dorsal (e.g., MT) visual
stream. Backward transfer is weaker and arises mostly from
nearby low-level visual regions (e.g., V2 and V4). Again, a trans-
fer is considerably disabled in the low GBA regime (Fig. 4D).

Finally, we consider V1 as a target node integrating the
bottom-up stimulus-related input and top-down inputs from
other regions in the large-scale cortical circuit and compute the
amount of synergistic modification performed by V1 (Fig. 6C,D,
rightmost columns). Strong stimulus-related synergies exist with
a variety of regions through the entire cortical hierarchy, partic-
ularly strong with frontal and prefrontal regions (areas 8 and
46d). Similar to the IPPs of “buffering” and “transferring,” a
strong GBA regime is needed to establish substantial synergistic
modification. In Figure 6F, we study in detail the latencies with
which synergistic integration arises. Figure 6F (left) shows the
synergistic information in the stimulus-induced V1 response
due to the integration of top-down inputs from region 46d. As
expected, the V1 response peak precedes the peak in the 46d
response, which lasts longer than the V1 response. Synergy starts
growing in parallel with the increase of activity in the area 46d

region, and the synergy peak occurs very close to the area 46d
response peak, indicating a fast integration of top-down signals
by V1. Remarkably, as shown by the scatter plot in Figure 6G,
synergistic integration is achieved first with top-down inputs
from regions hierarchically distant from V1. Indeed, a significant
anticorrelation (R=−0.66, p= 0.0002) exists between distances
in the matrix of Figure 6A (right) and the peak of the synergy
time course. This finding is nontrivial and reveals how the
bow-tie topology of the corticocortical connectome supports a
fast-“forward” transfer of stimulus-related information followed
by a “backward” integration of top-down influences, initiated by
the top-most regions (see Discussion).

Discussion
Information processing in cognitive sciences is commonly
viewed in terms of box–arrowmodels linking perception to beha-
vior, not necessarily with explicit reference to neural mechanisms
(Fodor, 1968; Rumelhart and McClelland, 1986) but increasingly
so (McClelland and Lambón Ralph, 2013), also due to the rise of
neuroimaging (Price, 2018). Hypotheses about processing archi-
tectures are validated through experimental tasks designed to dis-
entangle the relative contributions of different boxes in such
models. It is difficult, however, to interpret the results without
implicit reference to concepts of the postulated theory (Cooper,
2007). If this theory deviates strongly from the (unknown)
underlying neuronal computations, the resulting analyses may
be inherently biased. There is thus a need for data-driven, agnos-
tic approaches to get access to the algorithmic level.

We propose a set of metrics to detect and measure elementary
processing operations when applied to the analysis of neural
activity. The rigor in the definition of these IPPs (buffering, trans-
ferring, and integrating) necessitates that they must be abstract
and act in plain, identifiable ways on information conveyed by
neural activity. Although these operations are far from evident
cognitive functions (e.g., attentional modulation), they constitute
their necessary low-level ingredients, a sort of “neural assembly
language.” Varying combinations of IPPs build up into a variety
of functions, like the instruction set of a conventional digital
computer (Wilkes et al., 1951): despite their deceptive simplicity,
low-level instructions are sufficient to generate a variety of soft-
ware outputs, from the word processors we used to write this arti-
cle to the media players that have distracted us during its
preparation.

Low-level information processing naturally emerges from the
collective dynamics of complex nonlinear systems (Crutchfield &
Mitchell, 1995; Packard, 1988; Shaw, 1984). For instance, in cel-
lular automata, like Conway's “Game of Life,” dynamical patterns
known as “gliders” act as agents of information transfer and their
collisions as information modification events (Lizier, 2013). In
our study, the IPP of “transferring” is materialized by volleys of
propagating activity in coupled ring networks (Fig. 4)—like glid-
ers in the Game of Life—and the IPP of “integrating” by activity
volleys colliding within the sensory ring (Fig. 5). In contrast to
abstract toy systems, coupled ring models correspond to actual
neural circuits mimicking cognitive functions. Within this
framework, we can thus make a first step toward bridging the
gap between Marr's first and third levels, that is, from the struc-
ture of the neural circuit to its function. The missing link (Marr's
second level) is provided by the algorithmic decomposition of the
simulated activity, which precisely quantifies how (through
which primitive operations), when (in which epochs during the
task), and where (by which network nodes) information is
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processed. In this respect, our study is based on a ground-truth
model: knowing both the circuit wiring and the emulated cogni-
tive function with precision and certainty allows us to determine
the cocktail of IPPs associated with a certain function. The mea-
sured spatiotemporal patterns of IPP recruitment are compatible
with reasonable, a priori expectations, confirming that the output
results of our analyses are trustworthy.

Next, we apply our metrics to the nonhuman primate connec-
tome model (Fig. 6), which represents many cortical regions with
realistic connectivity. The structural connectivity for this model
is characterized by a double-hierarchical organization despite
its heterogeneous and irregular structure. Those characteristics
allow one to formulate hypotheses on how computations are per-
formed only up to some extent since they are not prescribed by an
imposed custom architecture.

As shown by Joglekar et al. (2018), the forward hierarchy can
serve as a substrate for forward propagation of stimulus-related
information to high-order regions, which is here tracked by
TE. After reaching the frontal subnetworks, their longer time
constants allow the reverberation of this information in working
memory, as tracked by AIS. Our IPP analyses also allow identify-
ing another algorithmic effect of the bow-tie connectome, now
serving as a substrate for the synergistic integration of top-down
inputs. Similar to the two reciprocally coupled rings, top-down
modulations of V1 activity are an automated consequence of
reverberant stimulus-related activity in high-order regions.
Thus, analyzing IPPs provides a picture of the algorithmic effects
of stimulus propagation in a realistic connectome model. It even
allows disentangling the detailed timing of three distinct primi-
tive computations of “transferring,” “buffering,” and “integrat-
ing,” in relation to the ascending and descending hierarchy
within the connectome.

The anticorrelation between hierarchical distance and
synergy maximum revealed in Figure 6F is an intriguing predic-
tion, supporting the role of frontal and prefrontal regions as lead-
ing top-down controllers (Paneri and Gregoriou, 2017).
Although these regions are “far away” from V1, they are the
first to exert a measurable information modification effect in
V1. Additional information modification in V1 then occurs via
the integration of inputs from other “closer” cortical regions,
however, only with greater latency, as the activity of these regions
must also be first modified as an influence of top-down influences
from the top of the hierarchy. Such anticorrelation is thus inter-
pretable and reasonable. It was, however, unanticipated and
makes us optimistic about the heuristic potential that IPP analy-
ses may have when applied agnostically to large-scale activity
recordings.

Our proposal to seek IPPs underlying cognitive computations
is not completely novel (Lungarella and Sporns, 2006; Ince et al.,
2015). Training in specific tasks has been shown to automatically
confer superior performance in apparently unrelated tasks
(Singley and Anderson, 1989). This finding led to the speculation
that cognitive algorithms may involve shared processing subrou-
tines so that training of low-level processes explains the transfer
of cognitive skills across tasks. Such a notion of “primitive ele-
ments” of cognitive processing (Taatgen, 2013) is naturally algo-
rithmic, since it refers to “prefunctional” information
manipulations, participating in the implementation of the final
function. Analogously, other cognitive theories postulate the
existence of intermediate representations (Wickelgren, 1999;
Mel and Fiser, 2000) between the encoding of isolated parts of
objects (e.g., contour segments) and the fully integrated encoding
of whole objects (e.g., shapes). Such intermediate representations

could be reinterpreted as primitive algorithmic steps toward
object recognition. Our notion of IPPs lies at an even lower hier-
archical level, since such prefunctional cognitive operations
could themselves be further decomposed into IPPs.

Another asset of our IPP analysis is that it goes beyond the
conventional study of functional connectivity. The latter just
detects which units process information together, while IPPs
additionally reveal the qualitative type of processing. For
instance, very similar functional connectivity motifs (activity
bumps in the sensory ring) are generated in attend-ON and
attend-OFF conditions during a match in the simulated experi-
ment of Figure 5. Functional connectivity primarily captures
information transfer for both conditions, while IPPs additionally
detect substantial information modification for attend-ON,
revealing two qualitatively distinct modes of processing. The
IPP framework thus enables stronger constraints on hypotheses
about cognitive processing implementations. The capacity to
simultaneously track different types of processing across different
locations will facilitate the identification of putative cognitive
architectures combining parallel and sequential aspects
(Zylberberg et al., 2011). Information decomposition techniques
can also be used to reveal distinct information processing roles in
different cognitive domains (Luppi et al., 2022).

The rate models considered here are extremely simplified with
respect to biological neural circuits. They simply serve to gener-
ate activity time series from generic neural systems mimicking
cognitive functions, without bothering too much about realism.
Despite their simplicity, ring models can generate a huge variety
of dynamics. We focus on asynchronous activity regimes, how-
ever, enhancing inhibition or varying delays gives rise to alterna-
tive regimes characterized by oscillatory activity, including
traveling waves or even chaotic oscillations (Roxin et al., 2005,
2006; Ardid et al., 2010; Battaglia and Hansel, 2011). In perspec-
tive, oscillatory regimes could be used to quantify whether their
presence affects primitive computations (e.g., boosting modifica-
tion and/or transfer), to elucidate the effects of cortical traveling
waves (Gong and van Leeuwen, 2009; Muller et al., 2018; Chemla
et al., 2019) on information processing (colliding wavefronts
might act as information modification events), or to benchmark
tools for spectrally resolved information-theoretical analyses
(Pinzuti et al., 2020).

Like previous studies of state-dependent information transfer
(Battaglia et al., 2012; Palmigiano et al., 2017), we capitalize on
the possibility of simulating arbitrarily large quantities of data
in perfectly controlled conditions to enable a straightforward
(binning) estimation of information-theoretical functionals.
Still, estimation is error-prone, as revealed by the spurious infer-
ence of information transfer from higher- to lower-order rings in
the feed-forward configuration of Figure 4. The correct qualita-
tive conclusion is achieved (i.e., the dominant direction of trans-
fer), but these results give a warning about the use of estimators.
Binning strongly depends on the number of samples, is biased,
and suffers from the curse of dimensionality (Treves and
Panzeri, 1995; Panzeri et al., 2007). For the analyses shown in
Extended Data Figure 4-1B,C, we used an alternative based on
semi-parametric estimation techniques, namely, the GCMI
(Ince et al., 2017).

Note that we use a mixture of classical metrics and the mod-
ern PID approach. Both can have certain deficiencies, especially
with respect to their interpretation. For example, our “classic”
definitions of active storage and TE may conflate synergetic
and unique information [see Barrett (2015) for the case of
Gaussian systems; compare also Gutknecht et al. (2021)]. TE
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may, under certain circumstances, overestimate the information
flow (James et al., 2016). Another concern could be caused by the
pairwise analysis, rather than multivariate, to calculate transfer.
However, in a system of many components, a transfer may occur
groupwise [“polyadic interactions” by James et al. (2016)]. Yet,
the network approach provides a useful first approximation to
track dynamics (Bullmore and Sporns, 2009; Kirst et al., 2016),
as long as we are aware that higher-order interactions may be
present (Davison et al., 2015). Yet another limitation of our
approach is the use of the MMI implementation of PID that
may overestimate the amount of redundancy or synergy, given
that it just provides upper bounds for them. For instance, the
redundancy between two Gaussian inputs both carrying some
information on a third univariate output can be proved to be pos-
itive in the MMI ansatz, even if the two input variables are
completely uncorrelated (Barrett, 2015), and this redundancy
misestimation necessarily leads to synergy misestimation.
Superior metrics have been proposed; see Bertschinger et al.
(2014) for alternatives to the MMI ansatz in special cases and
James et al. (2018) and Kay and Ince (2018) for formulations
of PID in terms of dependency constraints decomposition (avail-
able for both discrete and Gaussian variables). Eventually, even
superior evaluation of unique information beyond MMI and
explicit accounting of synergies never fully protect against the
possibility that paradoxical cases arise. The extreme scenarios
introduced in the theoretical literature to probe the limits of
different paradigms may be unlikely to occur in actual neural
activity recordings (and simulations from realistic models).
Nevertheless, in both “legacy” and “modern” approaches, the
interpretations of information flow, transfer, synergy, redundant
and unique information, etc. should always be taken with due
caution.

Here, we do not address open questions regarding the most
adequate estimators to compute IPPs, which is beyond the scope
of this study. We propose instead a pragmatic set of measures
that helps extract information about neural computing from
data. Nevertheless, for the specific case of our results, constructed
from real mechanistic circuit simulations rather than abstract
statistical models (conceived to test metric limits), the estimated
synergistic modification maps are perfectly interpretable, making
us more confident that we are tracking genuinely nontrivial com-
putations. Our methodological choices have at least the advan-
tage of being widely used [compare the use of the MMI ansatz
by Luppi et al. (2022)] and simple to implement.

The set of IPPs we propose is far from exhaustive. PID exists
for more than three variables, yielding a combinatorially explod-
ing number of information “atoms” (Williams and Beer, 2010).
Multivariate frameworks to quantify the informational effects
of emergent collective behavior have been proposed for arbi-
trarily large systems (Rosas et al., 2020). Any additional IPP
would still capture the informational effects of coordinated
dynamics. The name “dynome” has been proposed for the collec-
tion of possible dynamic modes that a neural circuit with a given
connectome can support (Kopell et al., 2014). In our algorithmic-
centered view, every dynamical mode within the “dynome” could
map to an element within the “infome,” a repertoire of operators
on information conveyed by the corresponding dynamics.
Possible examples are transiently coherent oscillatory bursts,
serving as information routing enablers (Palmigiano et al.,
2017), or the recruitment of distinct subsystems with identical
neurons processing information differently at different times
(Clawson et al., 2019; Pedreschi et al., 2020). In general, the num-
ber of considered IPPs should be tailored to match the variety of

intrinsic activity patterns that the considered neural circuit
engenders.

Until now, most attempts to identify canonical computations,
for example, inhibition-driven rerouting or normalization
(Pouille and Scanziani, 2004; Carandini and Heeger, 2011;
Hangya et al., 2014; Miller, 2016), were committed to specific
connectivity motifs being responsible for specific processing
types. Such structure-centric views may be limited by the fact
that a connectivity motif can behave differently in different con-
texts (Aertsen et al., 1989; Nadim et al., 2008, Kirst et al., 2016), so
that a single motif could perform multiple computations.
Alternatively, it is possible that different connectivities imple-
ment similar dynamics (Marder and Goaillard, 2006, Yger et
al., 2011, Voges and Perrinet, 2012), resulting in similar compu-
tations. The quantification of IPPs allows the study of informa-
tion processing directly at the algorithmic level, in a way
commensurable with, but “disembodied” from the specific circuit
mechanisms producing it. This may allow the detection of
specific cognitive processes (e.g., attentional modulation)
through the identification of their informational signatures
(e.g., boosted information modification). IPP analyses may,
also in the absence of (apparent) damage in the underlying cir-
cuits, allow the detection of disruptions in the information pro-
cessing itself, thus providing a fundamental “software”
explanation for cognitive impairments in pathologies (Clawson
et al., 2023).
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